Preview

Евразийский журнал наук о жизни

Расширенный поиск

Extracellular vesicles in the heart failure pathogenesis: mechanisms and therapeutic potential

https://doi.org/10.47093/3033-5493.2025.1.2.25-35

Аннотация

Heart failure (HF) remains a leading cause of morbidity and mortality worldwide, necessitating a deeper understanding of its molecular mechanisms. Extracellular vesicles (EVs) – exosomes, microvesicles, and apoptotic bodies and less-studied subtypes – have emerged as key intercellular communication mediators in cardiovascular diseases. These nanosized particles carry bioactive molecules such as proteins, lipids, and nucleic acids, influencing processes including cardiac remodeling, inflammation, fibrosis, and angiogenesis.

EVs derived from cardiomyocytes, endothelial cells, fibroblasts, and immune cells contribute to HF progression by modulating pathological signaling pathways. For instance, cardiomyocyte-derived EVs may propagate hypertrophy and apoptosis, while fibroblast-derived EVs promote extracellular matrix deposition, leading myocardial stiffness. Conversely, certain EV subpopulations exhibit cardioprotective effects, underscoring their dual role in HF pathogenesis. This review summarizes current knowledge on EV biogenesis, composition, and function in HF, highlighting their diagnostic and therapeutic potential.

We discuss emerging evidence from preclinical and clinical studies, focusing on EV-based biomarkers for early diagnosis and prognosis of HF. Furthermore, we explore therapeutic applications of engineered EVs for targeted drug delivery. Despite considerable advances, unresolved issues such as EV heterogeneity, a lack of standardization isolation methods, and difficulties in applying the results in practice. Addressing these challenges is crucial for unlocking novel strategies for HF management. Integration of fundamental and clinical findings was used to analyze the role of EVs in HF and to evaluate their potential for novel diagnostic and therapeutic applications.

Об авторах

R. E. Tokmachev
N.N. Burdenko Voronezh State Medical University
Россия

Roman E. Tokmachev, C. Med. Sci., Director of the Research Institute of Experimental Biology and Medicine 

10, Studentskaya str., Voronezh, 394036



L. N. Antakova
N.N. Burdenko Voronezh State Medical University
Россия

Lyubov N. Antakova, C. Biol. Sci., Senior Researcher, Head of the Laboratory of Postgenomic Research of the Research Institute of Experimental Biology and Medicine 

10, Studentskaya str., Voronezh, 394036



I. E. Esaulenko
N.N. Burdenko Voronezh State Medical University
Россия

Igor E. Esaulenko, Dr. Sci. (Med.), Associate Professor, Rector

10, Studentskaya str., Voronezh, 394036



V. V. Shishkina
N.N. Burdenko Voronezh State Medical University
Россия

Victoria V. Shishkina, C. Med. Sci., assistant Professor; Head of the Department of Histology, Senior Researcher Research Institute of Experimental Biology and Medicine 

10, Studentskaya str., Voronezh, 394036



A. Yu. Pulver
N.N. Burdenko Voronezh State Medical University
Россия

Alexander Yu. Pulver, Junior researcher at the Laboratory of Postgenomic Research of the Research Institute of Experimental Biology and Medicine 

10, Studentskaya str., Voronezh, 394036



O. A. Gerasimova
N.N. Burdenko Voronezh State Medical University
Россия

Olga A. Gerasimova, C. Biol. Sci., Senior Researcher of the laboratory of molecular morphology and immune histochemistry of the Research Institute of Experimental Biology and Medicine

10, Studentskaya str., Voronezh, 394036



Yanan Jiang
College of Pharmacy
Китай

Yanan Jiang, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)

157 Baojian Road, Harbin, 150081



Список литературы

1. Savarese G, Lund LH. Global Public Health Burden of Heart Failure. Card Fail Rev. 2017;3(1):7-11. https://doi.org/10.15420/cfr.2016:25:2.

2. Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56-e528. https://doi.org/10.1161/CIR.0000000000000659.

3. Wei C, Heidenreich PA, Sandhu AT. The economics of heart failure care. Prog Cardiovasc Dis. 2024;82:90-101. https://doi.org/10.1016/j.pcad.2024.01.010.

4. Tian C, Ziegler JN, Zucker IH. Extracellular Vesicle MicroRNAs in Heart Failure: Pathophysiological Mediators and Therapeutic Targets. Cells. 2023;12(17):2145. https://doi.org/10.3390/cells12172145.

5. Assunção RRS, Santos NL, Andrade LNS. Extracellular vesicles as cancer biomarkers and drug delivery strategies in clinical settings: Advances, perspectives, and challenges. Clinics (Sao Paulo). 2025;80:100635. https://doi.org/10.1016/j.clinsp.2025.100635.

6. Huang JP, Chang CC, Kuo CY, et al. Exosomal microRNAs miR-30d-5p and miR-126a-5p Are Associated with Heart Failure with Preserved Ejection Fraction in STZInduced Type 1 Diabetic Rats. Int J Mol Sci. 2022;23(14):7514. https://doi.org/10.3390/ijms23147514.

7. Eguchi S, Takefuji M, Sakaguchi T, et al. Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction. J Biol Chem. 2019; 294(31): 11665-11674. https://doi.org/10.1074/jbc.RA119.007537.

8. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478). https://doi.org/10.1126/science.aau6977.

9. Welsh JA, Goberdhan DCI, O’Driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 2024;13(2):e12404. https://doi.org/10.1002/jev2.12404.

10. Di Vizio D, Morello M, Dudley AC, et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol. 2012;181(5):1573-1584. https://doi.org/10.1016/j.ajpath.2012.07.030.

11. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014; 30:255-289. https://doi.org/10.1146/annurev-cellbio-101512-122326.

12. Yáñez-Mó M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. https://doi.org/10.3402/jev.v4.27066.

13. Huang XH, Li JL, Li XY, et al. miR-208a in Cardiac Hypertrophy and Remodeling. Front Cardiovasc Med. 2021;8:773314. https://doi.org/10.3389/fcvm.2021.773314.

14. Ateeq M, Broadwin M, Sellke FW, Abid MR. Extracellular Vesicles’ Role in Angiogenesis and Altering Angiogenic Signaling. Med Sci (Basel). 2024;12(1):4. https://doi.org/10.3390/medsci12010004.

15. Barile L, Moccetti T, Marbán E, Vassalli G. Roles of exosomes in cardioprotection. Eur Heart J. 2017;38(18):1372-1379. https://doi.org/10.1093/eurheartj/ehw304.

16. Barile L, Lionetti V, Cervio E, et al. Extracellular Vesicles From Human Cardiac Progenitor Cells Inhibit Cardiomyocyte Apoptosis and Improve Cardiac Function after Myocardial Infarction. Cardiovascular Research. 2014;103:530–541. https://doi.org/10.1093/cvr/cvu167.

17. Omoto ACM, do Carmo JM, da Silva AA, Hall JE, Mouton AJ. Immunometabolism, extracellular vesicles and cardiac injury. Front Endocrinol (Lausanne). 2024;14. https://doi.org/10.3389/fendo.2023.1331284.

18. Torri A, Carpi D, Bulgheroni E, et al. Extracellular MicroRNA Signature of Human Helper T Cell Subsets in Health and Autoimmunity. J Biol Chem. 2017;292(7): 2903-2915. https://doi.org/10.1074/jbc.M116.769893.

19. Viola M, de Jager SCA, Sluijter JPG. Targeting Inflammation after Myocardial Infarction: A Therapeutic Opportunity for Extracellular Vesicles? Int J Mol Sci. 2021; 22(15):7831. https://doi.org/10.3390/ijms22157831.

20. Ding P, Song Y, Yang Y, and Zeng C. NLRP3 inflammasome and pyroptosis in cardiovascular diseases and exercise intervention. Front. Pharmacol. 2024;15:1368835. https://doi.org/10.3389/fphar.2024.1368835.

21. Khalaji A, Mehrtabar S, Jabraeilipour A, et al. Inhibitory effect of microRNA-21 on pathways and mechanisms involved in cardiac fibrosis development. Ther Adv Cardiovasc Dis. 2024;18:17539447241253134. https://doi.org/10.1177/17539447241253134.

22. Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Adv Pharmacol. 2018;81:241-330. https://doi.org/10.1016/bs.apha.2017.08.002.

23. Hu H, Wang X, Yu H and Wang Z. Extracellular vesicular microRNAs and cardiac hypertrophy. Front Endocrinol. 2025;15:1444940. https://doi.org/10.3389/fendo.2024.1444940.

24. Pironti G, Strachan RT, Abraham D, et al. Circulating Exosomes Induced by Cardiac Pressure Overload Contain Functional Angiotensin II Type 1 Receptors. Circulation. 2015;131(24):2120-2130. https://doi.org/10.1161/CIRCULATIONAHA.115.015687.

25. Li J, Wang T, Hou X, et al. Extracellular vesicles: opening up a new perspective for the diagnosis and treatment of mitochondrial dysfunction. J Nanobiotechnology. 2024;22(1):487. https://doi.org/10.1186/s12951-024-02750-8.

26. Wang K, Yuan Y, Liu X, et al. Cardiac Specific Overexpression of Mitochondrial Omi/HtrA2 Induces Myocardial Apoptosis and Cardiac Dysfunction. Sci Rep. 2016;6:37927. https://doi.org/10.1038/srep37927.

27. Qin D, Wang X, Pu J, Hu H. Cardiac cells and mesenchymal stem cells derived extracellular vesicles: a potential therapeutic strategy for myocardial infarction. Front Cardiovasc Med. 2024;11:1493290. https://doi.org/10.3389/fcvm.2024.1493290.

28. Wendt S, Goetzenich A, Goettsch C. et al. Evaluation of the cardioprotective potential of extracellular vesicles – a systematic review and meta-analysis. Sci Rep. 2018;8:15702. https://doi.org/10.1038/s41598-018-33862-5.

29. Li J, Salvador AM, Li G, et al.. Mir-30d Regulates Cardiac Remodeling by Intracellular and Paracrine Signaling. Circ Res. 2021;128(1):e1-e23. https://doi.org/10.1161/CIRCRESAHA.120.317244.

30. Zhang J, Zhang J, Jiang X, Jin J, Wang H, Zhang Q. ASCs-EVs Inhibit Apoptosis and Promote Myocardial Function in the Infarcted Heart via miR-221. Discov Med. 2023;35(179):1077-1085. https://doi.org/10.24976/Discov.Med.202335179.104.

31. Gao S, Gao H, Dai L, et al. miR-126 regulates angiogenesis in myocardial ischemia by targeting HIF-1α. Exp Cell Res. 2021;409(2):112925. https://doi.org/10.1016/j.yexcr.2021.112925.

32. Xu J, Wang F, Li Y, et al. Estrogen inhibits TGF-β1-stimulated cardiac fibroblast differentiation and collagen synthesis by promoting Cdc42. Mol Med Rep. 2024;30: 123. https://doi.org/10.3892/mmr.2024.13246.

33. Mahmoud AM, Wilkinson FL, McCarthy EM, et al. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress. FASEB J. 2017;31(10):4636-4648. https://doi.org/10.1096/fj.201601244RR.

34. Li K, Zhao J, Wang M, et al. The Roles of Various Prostaglandins in Fibrosis: A Review. Biomolecules. 2021;11(6):789. https://doi.org/10.3390/biom11060789.

35. Gulshan K, Smith JD. Sphingomyelin regulation of plasma membrane asymmetry, efflux and reverse cholesterol transport. Clin Lipidol. 2014;9(3):383–393. https://doi.org/10.2217/clp.14.28.

36. Bheri S, Brown ME, Park HJ, Brazhkina O, Takaesu F, Davis ME. Customized Loading of microRNA-126 to Small Extracellular Vesicle-Derived Vehicles Improves Cardiac Function after Myocardial Infarction. ACS Nano. 2023;17(20):19613-19624. https://doi.org/10.1021/acsnano.3c01534.

37. Ning Y, Huang P, Chen G, et al. Atorvastatin-pretreated mesenchymal stem cellderived extracellular vesicles promote cardiac repair after myocardial infarction via shifting macrophage polarization by targeting microRNA-139-3p/Stat1 pathway. BMC Med. 2023;21(1): 96. https://doi.org/10.1186/s12916-023-02778-x.

38. Pu Y, Li C, Qi X, et al. Extracellular Vesicles from NMN Preconditioned Mesenchymal Stem Cells Ameliorated Myocardial Infarction via miR-210-3p Promoted Angiogenesis. Stem Cell Rev Rep. 2023;19(4):1051-1066. https://doi.org/10.1007/s12015-022-10499-6.

39. Yao Y, Yu Y, Xu Y, Liu Y, Guo Z. Enhancing cardiac regeneration: direct reprogramming of fibroblasts into myocardial-like cells using extracellular vesicles secreted by cardiomyocytes. Mol Cell Biochem. 2024. https://doi.org/10.1007/s11010-024-05184-w.

40. Hegyesi H, Pallinger É, Mecsei S. et al. Circulating cardiomyocyte-derived extracellular vesicles reflect cardiac injury during systemic inflammatory response syndrome in mice. Cell Mol Life Sci. 2022;79:84. https://doi.org/10.1007/s00018-021-04125-w.

41. Matsumoto S, Sakata Y, Suna S, et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res. 2013;113(3):322-326. https://doi.org/10.1161/CIRCRESAHA.113.301209.

42. RuizdelRio J, Guedes G, Novillo D, et al. Fibroblast-derived extracellular vesicles as trackable efficient transporters of an experimental nanodrug with fibrotic heart and lung targeting. Theranostics. 2024;14(1):176-202. https://doi.org/10.7150/thno.85409.

43. Marchegiani F, Recchioni R, Di Rosa M, et al. Low circulating levels of miR-17 and miR-126-3p are associated with increased mortality risk in geriatric hospitalized patients affected by cardiovascular multimorbidity. Geroscience. 2024;46(2):2531-2544. https://doi.org/10.1007/s11357-023-01010-1.

44. Parvan, R, Becker, V, Hosseinpour M. et al. Prognostic and predictive microRNA panels for heart failure patients with reduced or preserved ejection fraction: a metaanalysis of Kaplan–Meier-based individual patient data. BMC Med. 2025;23:409. https://doi.org/10.1186/s12916-025-04238-0.

45. Lin Y, Fu S, Yao Y. et al. Heart failure with preserved ejection fraction based on aging and comorbidities. J Transl Med. 2021;19: 291. https://doi.org/10.1186/s12967-021-02935-x.

46. Fu Y, Chen J, Huang Z. Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA. 2019;1(1):24. https://doi.org/10.1186/s41544-019-0024-y.

47. Murphy DE, de Jong OG, Brouwer M. et al. Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. Exp Mol Med. 2019;51(3):12. https://doi.org/10.1038/s12276-019-0223-5.

48. Gupta D, Wiklander OPB, Wood MJA, El-Andaloussi S. Biodistribution of therapeutic extracellular vesicles. Extracell Vesicles Circ Nucleic Acids. 2023;4:170-90. https://doi.org/10.20517/evcna.2023.12.

49. Park KS, Bandeira E, Shelke GV, et al. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther. 2019;10:288. https://doi.org/10.1186/s13287-019-1398-3.

50. Guo L, Xu K, Yan H, Feng H, Wang T, Chai L and Xu G: MicroRNA expression signature and the therapeutic effect of the microRNA-21 antagomir in hypertrophic scarring. Mol Med Rep. 2017;15:1211-1221. https://doi.org/10.3892/mmr.2017.6104.

51. Gu J, You J, Liang H, Zhan J, Gu X, Zhu Y. Engineered bone marrow mesenchymal stem cell-derived exosomes loaded with miR302 through the cardiomyocyte specific peptide can reduce myocardial ischemia and reperfusion (I/R) injury. J Transl Med. 2024;22(1):168. https://doi.org/10.1186/s12967-024-04981-7.

52. Sato YT, Umezaki K, Sawada S, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Scientific Reports. 2016;6(1):21933. https://doi.org/10.1038/srep21933.

53. Xia Y, Duan S, Han C, Jing C, Xiao Z, Li C. Hypoxia-responsive nanomaterials for tumor imaging and therapy. Front Oncol. 2022;12:1089446. https://doi.org/10.3389/fonc.2022.1089446.

54. Greenberg ZF, Graim KS, He M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv Drug Deliv Rev. 2023;199:114974. https://doi.org/10.1016/j.addr.2023.114974.

55. Ivanova A, Badertscher L, O’Driscoll G, et al. Creating Designer Engineered Extracellular Vesicles for Diverse Ligand Display, Target Recognition, and Controlled Protein Loading and Delivery. Adv Sci (Weinh). 2023;10(34):2304389. https://doi.org/10.1002/advs.202304389.


Рецензия

Для цитирования:


Tokmachev R.E., Antakova L.N., Esaulenko I.E., Shishkina V.V., Pulver A.Yu., Gerasimova O.A., Jiang Ya. Extracellular vesicles in the heart failure pathogenesis: mechanisms and therapeutic potential. Евразийский журнал наук о жизни. 2025;1(2):25-35. https://doi.org/10.47093/3033-5493.2025.1.2.25-35

For citation:


Tokmachev R.E., Antakova L.N., Esaulenko I.E., Shishkina V.V., Pulver A.Yu., Gerasimova O.A., Jiang Ya. Extracellular vesicles in the heart failure pathogenesis: mechanisms and therapeutic potential. The Eurasian Journal of Life Sciences. 2025;1(2):25-35. https://doi.org/10.47093/3033-5493.2025.1.2.25-35

Просмотров: 13

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 3033-5493 (Print)
ISSN 3033-6031 (Online)