Preview

The Eurasian Journal of Life Sciences

Advanced search

Treatment of cardiac contusion: experimental basis for pathogenetic therapy and emerging approaches in cardioprotection

https://doi.org/10.47093/3033-5493.2025.1.1.53-72

Abstract

Myocardial contusion is a serious consequence of blunt thoracic trauma, most commonly resulting from traffic accidents, falls, sports injuries, and combatrelated events. It is associated with impaired myocardial contractility, fibrosis, and systemic inflammation, and carries a high risk of complications, with mortality rates reaching up to 10%. Despite advances in understanding the pathogenesis, the development of effective therapeutic strategies remains a key priority in experimental cardiology. 

A promising direction involves the development of targeted approaches that address both myocardial injury and the optimization of adaptive responses. The first aspect focuses on counteracting bioenergetic hypoxia, restoring energy and ionic homeostasis, suppressing secondary damage in the context of inflammation, and regulating apoptosis and autophagy. The second aspect targets the modulation of stress-activating and stress-limiting systems, including tissue-level adaptation mechanisms.

Particular attention has been given to cardioprotective agents, which have demonstrated efficacy in ischemic heart disease, myocardial infarction, and ischemia–reperfusion injury. However, their impact on post-traumatic myocardial remodeling remains insufficiently explored. Phytopreparations from the Chinese Pharmacopoeia, characterized by multitarget activity on key pathological processes — such as bioenergetic deficiency, oxidative stress, and dysregulation of cellular homeostasis — may offer a viable alternative. Integrated strategies combining anti-inflammatory effects, metabolic support, and control of fibrogenesis may enhance therapeutic outcomes.

Further research is necessary to assess the synergistic interactions of individual components, dose-dependent responses, and the long-term impact on myocardial structure and function. Multimodal approaches may improve therapeutic efficacy and help overcome the limitations of monotherapy, opening new avenues for the management of post-traumatic cardiac complications.

About the Authors

A. N. Zolotov
Omsk State Medical University
Russian Federation

Alexander N. Zolotov, PhD, Associate Professor, Senior Researcher of the Central Research Laboratory, Associate Professor of the Department of Pathophysiology

str. Lenina, 12, Omsk, 644099



J. Li
Harbin Medical University
China

Jiamin Li, PhD, Professor, Deputy Director of the Office

157 Baojian Rd, Nangang, Harbin, 150088, Heilongjiang



N. Wang
Harbin Medical University
China

Ning Wang, PhD, Professor, Deputy director

157 Baojian Rd, Nangang, Harbin, 150088, Heilongjiang



A. B. Priymak
Omsk State Medical University
Russian Federation

Anton B. Priymak, PhD, Assistant of the Department of Pathophysiology

str. Lenina, 12, Omsk, 644099



O. V. Korpacheva
Omsk State Medical University
Russian Federation

Olga V. Korpacheva, MD, DMSc, Professor, Head of the Department of Pathophysiology

str. Lenina, 12, Omsk, 644099



E. I. Klyuchnikova
Omsk State Medical University
Russian Federation

Evgenia I. Klyuchnikova, PhD student, Assistant of the Department of Pathophysiology

str. Lenina, 12, Omsk, 644099



A. P. Toropov
Omsk State Medical University
Russian Federation

Andrei P. Toropov, PhD, Assistant of the Department of Pathophysiology

str. Lenina, 12, Omsk, 644099



References

1. Brewer B, Zarzaur BL. Cardiac Contusions. Current Trauma Reports. 2015;1:232– 236. https://doi.org/10.1007/s40719-015-0031-x.

2. Ždrale S, Vuković M. Cardiac War Wounds. Acta Facultatis Medicae Naissensis. 2016;33:135–140. https://doi.org/10.1515/afmnai-2016-0015.

3. Huber S, Biberthaler P, Delhey P, et al. Predictors of poor outcomes after significant chest trauma in multiply injured patients: a retrospective analysis from the German Trauma Registry (Trauma Register DGU®). Scand J Trauma Resusc Emerg Med. 2014;22:52. https://doi.org/10.1186/s13049-014-0052-4.

4. Scagliola R, Seitun S, Balbi M. Cardiac contusions in the acute care setting: Historical background, evaluation and management. Am J Emerg Med. 2022;61:152-157. https://doi.org/10.1016/j.ajem.2022.09.005.

5. Kyriazidis IP, Jakob DA, Vargas JAH, et al. Accuracy of diagnostic tests in cardiac injury after blunt chest trauma: a systematic review and meta-analysis. World J Emerg Surg. 2023;18(1):36. https://doi.org/10.1186/s13017-023-00504-9.

6. Baldwin D, Chow KL, Mashbari H, Omi E, Lee JK. Case reports of atrial and pericardial rupture from blunt cardiac trauma. J CardiothoracSurg. 2018;13(1):71. https://doi.org/10.1186/s13019-018-0753-2.

7. Denisov AV, Kuzmin AYa, Gavrilin SV et al. Heart contusion in case of closed chest injuries: etiology, diagnosis, severity of heart damage (literature review). Military Medical Journal. 2018;339(8):24-32. (In Russ.). https://doi.org/10.17816/RMMJ73014.

8. Bordakov PV, Ostapenko EN, Bordakov VN, Gukailo SE, Ignatovich DV. Closed heart injuries. Diagnosis and treatment at the prehospital stage. Military medicine. 2023;1(66):2-12. (In Russ.). https://doi.org/10.51922/2074-5044.2023.1.2.

9. McMullan MH, Maples MD, Kilgore TL Jr, Hindman SH. Surgical experience with left ventricular free wall rupture. Ann Thorac Surg. 2001;71(6):1894-1899. https://doi.org/10.1016/s0003-4975(01)02625-x.

10. Kang W, Robitaille MC, Merrill M, Teferra K, Kim C, Raphael MP. Mechanisms of cell damage due to mechanical impact: an in vitro investigation. Sci Rep. 2020;10(1):12009. Published 2020 Jul 20. https://doi.org/10.1038/s41598-020-68655-2.

11. Korpacheva OV, Dolgikh VT. Principle energy substrate changing as a technique myocardium of protection against ischemic damage in experimental mechanic cardiac contusion. Pathological physiology and experimental therapy. 2008;4:16-19. (In Russ.).

12. Li X, Wang Z, Yang Y, Meng F, He Y, Yang P. Myocardial infarction following a blunt chest trauma: A case report. Medicine (Baltimore). 2019;98(4):e14103. https://doi.org/10.1097/MD.0000000000014103.

13. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21(5):268-283. https://doi.org/10.1038/s41580-020-0227-y.

14. Prikhodko VA, Selizarova NO, Okovityi SV. Molecular mechanisms for hypoxia development and adaptation to it. Part I. Russian journal of Archive of Pathology. 2021;83(2):52-61 (In Russ.). https://doi.org/10.17116/patol20218302152.

15. Senoner T, Dichtl W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target?. Nutrients. 2019;11(9):2090. https://doi.org/10.3390/nu11092090.

16. Priymak AB, Korpacheva OV, Zolotov AN, Kluchnikova EI. Dalargin, a peripheral opiate receptor agonist, in the pathogenesis of myocardial contusion in rats with different stress tolerance. Fundamental and clinical medicine. 2022;7(2):8-19 (In Russ.). https://doi.org/10.23946/2500-0764-2022-7-2-8-19.

17. Smith KA, Waypa GB, Schumacker PT. Redox signaling during hypoxia in mammalian cells. RedoxBiol. 2017;13:228-234. https://doi.org/10.1016/j.redox.2017.05.020.

18. Korpacheva OV, Dolgikh VT. Posttraumatic period in cardiac contusion (experimental study). General reanimatology.2008;4(1):13-17 (In Russ.).

19. Korpacheva OV. Vegetative regulation of cardiac activity in an yearly post-traumatic period following experimental heart contusion. Bulletin of the St. Petersburg state medical academy named after I.I. Mechnikov. 2007;8(3):107-109 (In Russ.).

20. Korpacheva OV, Dolgikh VT. Electrocardiographic abnormalities in cardiac contusion: experimental study. General reanimatology. 2006;2(5-6):29-34 (In Russ.).

21. de Lucia C, Piedepalumbo M, Paolisso G, Koch WJ. Sympathetic nervous system in age-related cardiovascular dysfunction: Pathophysiology and therapeutic perspective. Int J Biochem Cell Biol. 2019;108:29-33. https://doi.org/10.1016/j.biocel.2019.01.004.

22. Atrooz F, Alkadhi KA, Salim S. Understanding stress: Insights from rodent models. Curr Res Neurobiol. 2021;2:100013. https://doi.org/10.1016/j.crneur.2021.100013.

23. Byalovskij YY, Bulatetskii SV, Glushkova EP. Systemic organization of nonspecific adaptation mechanisms in rehabilitation medicine. Voronezh: Limited Liability Company «Izdatelstvo Ritm»;2017. 406 p. (In Russ.).

24. Bangsumruaj J, Kijtawornrat A, Kalandakanond-Thongsong S. Effects of chronic mild stress on GABAergic system in the paraventricular nucleus of hypothalamus associated with cardiac autonomic activity. Behav Brain Res. 2022;432:113985. https://doi.org/10.1016/j.bbr.2022.113985.

25. Jie F, Yin G, Yang W, et al. Stress in Regulation of GABA Amygdala System and Relevance to Neuropsychiatric Diseases. Front Neurosci. 2018;12:562. https://doi.org/10.3389/fnins.2018.00562.

26. Wang S. Historical Review: Opiate Addiction and Opioid Receptors. Cell Transplant. 2019;28(3):233-238. https://doi.org/10.1177/0963689718811060.

27. Stein C. Opioid Receptors. Annu Rev Med. 2016;67:433-51. https://doi.org/10.1146/annurev-med-062613-093100.

28. Caruso A, Gaetano A, Scaccianoce S. Corticotropin-Releasing Hormone: Biology and Therapeutic Opportunities. Biology (Basel). 2022;11(12):1785. https://doi.org/10.3390/biology11121785.

29. Jaschke N, Pählig S, Pan YX, Hofbauer LC, Göbel A, Rachner TD. From Pharmacology to Physiology: Endocrine Functions of μ-Opioid Receptor Networks. Trends Endocrinol Metab. 2021;32(5):306-319. https://doi.org/10.1016/j.tem.2021.02.004.

30. Parker KE, Sugiarto E, Taylor AMW, Pradhan AA, Al-Hasani R. Pain, Motivation, Migraine, and the Microbiome: New Frontiers for Opioid Systems and Disease. Mol Pharmacol. 2020;98(4):433-444. https://doi.org/10.1124/mol.120.119438.

31. Patrono C. Cardiovascular effects of cyclooxygenase-2 inhibitors: a mechanistic and clinical perspective. Br J Clin Pharmacol. 2016;82(4):957-964. https://doi.org/10.1111/bcp.13048.

32. Gądek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacol Rep. 2013;65(6):1655-62. https://doi.org/10.1016/s1734-1140(13)71527-5.

33. Zolotov AN, Klyuchnikova EI, Korpacheva OV, Priymak AB. Myocardial contractile function in the post-traumatic period of cardiac contusion in rats with different stress resistance: a preclinical experimental randomized trial. Kuban scientific medical bulletin. 2024;31(5):41-72 (In Russ.). https://doi.org/10.25207/1608-6228-2024-31-5-41-72.

34. Klyuchnikova EI, Korpacheva OV, Mozgovoi SI, Zolotov AN, Kononov AV. Expression of Beclin-1 and Caspase-3 after the myocardial contusion in rats with high and low stress resistance. Fundamental and clinical medicine. 2024;9(2):8-19 (In Russ.). https://doi.org/10.23946/2500-0764-2024-9-2-8-19.

35. Klyuchnikova EI, Mozgovoy SI, Zolotov AN, Korpacheva OV, Kononov AV. Expression of desmin in the myocardium of rats with high and low stress resistance in the posttraumatic period of cardiac contusion. Modern problems of science and education. 2025;1:36 (In Russ.). https://doi.org/10.17513/spno.33940.

36. Li J, Li Y, Liu Y et al. Fibroblast Growth Factor 21 Ameliorates NaV1.5 and Kir2.1 Channel Dysregulation in Human AC16 Cardiomyocytes. Front Pharmacol. 2021;12:715466. https://doi.org/10.3389/fphar.2021.715466.

37. Li J, Gong L, Zhang R et al. Fibroblast growth factor 21 inhibited inflammation and fibrosis after myocardial infarction via EGR1. Eur J Pharmacol. 2021;910:174470. https://doi.org/10.1016/j.ejphar.2021.174470.

38. Li J, Xu C, Liu Y et al. Fibroblast growth factor 21 inhibited ischemic arrhythmias via targeting miR-143/EGR1 axis. Basic Res Cardiol. 2020;115(2):9. https://doi.org/10.1007/s00395-019-0768-4.

39. Korpacheva OV, Dolgikh VT. Trimetazidine preinjection influence on isolated hearts posttraumatic contractility course of myocardial contusion. Journal of Ural Medical Academic Science. 2008;3(21):37-41 (In Russ.).

40. Mazina NK, Mazin VP, Kovalenko AL. Clinical economic effects of reamberin use in urgent disorders based on results of meta-analysis. Pharmacoeconomics: theory and practice. 2014;2(4):18-25 (In Russ.).

41. Oynotkinova OSh, Kornienko EA. Effects of reamberin infusion on dynamic changes in oxidative stress and blood rheological properties in patients with acute myocardial infarction and type 2 diabetes mellitus after percutaneous transluminal angioplasty. FOCUS Endocrinology. 2021;2(2):31-37 (In Russ.). https://doi.org/10.47407/ef2021.2.2.0022.

42. Gorbunova AV, Dzhabrailova BA, Korpacheva OV. The use of metabolic cytoprotectors trimetazidine and glutamine in experimental cardiac contusion. International research journal. 2016;2-3(44):49-51 (In Russ.). https://doi.org/10.18454/IRJ.2016.44.051.

43. Abbasov AK, Abbasova DB, Ariphodzhaeva FZ. Efficacy of complex therapy with mildronate in patients with acute coronary syndrome. Molodoi uchyonyi = Young Scientist. 2017;12(146):111-114 (In Russ.).

44. Sidorenko GI, Gelis LG, Medvedeva EA et al. Pharmacological protection of the myocardium with reamberin in coronary artery bypass grafting in patients with postinfarction angina. Terapevticheskii arkhiv. 2011;83(9):35-40 (In Russ.).

45. Woxholt S, Ueland T, Aukrust P et al. Effect of tocilizumab on endothelial and platelet-derived CXC-chemokines and their association with inflammation and myocardial injury in STEMI patients undergoing primary PCI. Int J Cardiol. 2025;418:132613. https://doi.org/10.1016/j.ijcard.2024.132613.

46. Kindberg KM, Broch K, Andersen GØ et al. Neutrophil Extracellular Traps in ST-Segment Elevation Myocardial Infarction: Reduced by Tocilizumab and Associated With Infarct Size. JACC Adv. 2024;3(9):101193. https://doi.org/10.1016/j.jacadv.2024.101193.

47. Broch K, Anstensrud AK, Woxholt S et al. Randomized Trial of Interleukin-6 Receptor Inhibition in Patients With Acute ST-Segment Elevation Myocardial Infarction. J Am Coll Cardiol. 2021;77(15):1845-1855. https://doi.org/10.1016/j.jacc.2021.02.049

48. Helseth R, Kleveland O, Ueland T et al. Tocilizumab increases citrullinated histone 3 in non-ST segment elevation myocardial infarction. Open Heart. 2021;8(1):e001492. https://doi.org/10.1136/openhrt-2020-001492.

49. Wang S, Zhang J, Wang Y, Jiang X, Guo M, Yang Z. NLRP3 inflammasome as a novel therapeutic target for heart failure. Anatol J Cardiol. 2022;26(1):15-22. https://doi.org/10.5152/AnatolJCardiol.2021.580.

50. Pavillard LE, Cañadas-Lozano D, Alcocer-Gómez E, et al. NLRP3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction. Oncotarget. 2017;8(59):99740-99756. https://doi.org/10.18632/oncotarget.20763.

51. Masson W, Lobo M, Barbagelata L, Lavalle-Cobo A, Molinero G. Prognostic value of statin therapy in patients with myocardial infarction with nonobstructive coronary arteries (MINOCA): a meta-analysis. Acta Cardiol. 2022;77(6):480-487. https://doi.org/10.1080/00015385.2021.1955480.

52. Stähli BE, Klingenberg R, Heg D et al. Mammalian Target of Rapamycin Inhibition in Patients With ST-Segment Elevation Myocardial Infarction. J Am Coll Cardiol. 2022;80(19):1802-1814. https://doi.org/10.1016/j.jacc.2022.08.747.

53. Aisa Z, Liao GC, Shen XL, Chen J, Jiang SB. Effect of autophagy on myocardial infarction and its mechanism. Eur Rev Med Pharmacol Sci. 2017;21(16):3705-3713.

54. Li ZH, Wang YL, Wang HJ, Wu JH, Tan YZ. Rapamycin-Preactivated Autophagy Enhances Survival and Differentiation of Mesenchymal Stem Cells After Transplantation into Infarcted Myocardium. Stem Cell Rev Rep. 2020;16(2):344-356. https://doi.org/10.1007/s12015-020-09952-1.

55. Kwon SP, Hwang BH, Park EH et al. Nanoparticle-Mediated Blocking of Excessive Inflammation for Prevention of Heart Failure Following Myocardial Infarction. Small. 2021;17(32):e2101207. https://doi.org/10.1002/smll.202101207.

56. Elma B, Mammadov R, Süleyman H, et al. The effect of rutin on experimentally induced acute heart contusion in rats: Biochemical and histopathological evaluation. Ulus Travma Acil Cerrahi Derg. 2022;28(8):1073-1081. https://doi.org/10.14744/tjtes.2021.97760.

57. Biffl WL, Fawley JA, Mohan RC. Diagnosis and management of blunt cardiac injury: What you need to know. J Trauma Acute Care Surg. 2024;96(5):685-693. https://doi.org/10.1097/TA.0000000000004216.

58. Oliver E, Mayor F Jr, D’Ocon P. Beta-blockers: Historical Perspective and Mechanisms of Action. Rev Esp Cardiol (Engl Ed). 2019;72(10):853-862. https://doi.org/10.1016/j.rec.2019.04.006.

59. Wang SY, Shu Q, Chen PP, et al. [Effects of electroacupuncture pretreatment on GABAA receptor of fastigial nucleus and sympathetic nerve activity in rats with myocardial ischemia reperfusion injury]. Zhongguo Zhen Jiu. 2023;43(6):669-678 (In Chin.). https://doi.org/10.13703/j.0255-2930.20221203-k0003.

60. Antonova VV, Evseev AK, Goroncharovskaya IV et al. The effect of a tyrosyl-d-alanyl-glycyl-phenylalanyl-leucyl-arginine diacetate (Dalargin) on oxidative stress in patients with severe combined trauma: a prospective clinical study. Annals of critical care. 2023;4:185-196 (In Russ.). https://doi.org/10.21320/1818-474X-2023-4-185-196.

61. Headrick JP, Pepe S, Peart JN. Non-analgesic effects of opioids: cardiovascular effects of opioids and their receptor systems. Curr Pharm Des. 2012;18(37):60906100. https://doi.org/10.2174/138161212803582360.

62. Olianas MC, Dedoni S, Onali P. δ-Opioid receptors stimulate GLUT1-mediated glucose uptake through Src- and IGF-1 receptor-dependent activation of PI3-kinase signalling in CHO cells. Br J Pharmacol. 2011;163(3):624-637. https://doi.org/10.1111/j.1476-5381.2011.01234.x.

63. Lackner I, Weber B, Knecht D, et al. Cardiac Glucose and Fatty Acid Transport After Experimental Mono- and Polytrauma. Shock. 2020;53(5):620-629. https://doi.org/10.1097/SHK.0000000000001400.

64. Bulgakov SA. The use of agonists of opioid peptide receptors in the gastroenterological practice. Russian Journal of Evidence-Based Gastroenterology. 2015;4(1):14-18. (In Russ.). https://doi.org/10.17116/dokgastro201541-214-18.

65. Perevedentseva SE, Savinova NV, Trofimova SR. The effect of dalargin on the parameters of collagen metabolism in tissues of rats under the action of repeated stress. Health, demography, ecology of the Finno-Ugric peoples. 2022;2:54-58 (In Russ.).

66. Liashev AYu, Mal GS. Effect of dalargin on phagocytic activity of neutrophils in the experimental ulcerative colitis in mice. Vestnik of the Smolensk state medical academy. 2024;23(3):40-46 (In Russ.).

67. Chen Y, Li Y, Huang L et al. Antioxidative Stress: Inhibiting Reactive Oxygen Species Production as a Cause of Radioresistance and Chemoresistance. Oxid Med Cell Longev. 2021;2021:6620306. https://doi.org/10.1155/2021/6620306.

68. Hu T, Zou HX, Le SY et al. Tanshinone IIA confers protection against myocardial ischemia/reperfusion injury by inhibiting ferroptosis and apoptosis via VDAC1. Int J Mol Med. 2023;52(5):109. https://doi.org/10.3892/ijmm.2023.5312.

69. Cheng TF, Zhao J, Wu QL et al. Compound Dan Zhi tablet attenuates experimental ischemic stroke via inhibiting platelet activation and thrombus formation. Phytomedicine. 2020;79:153330. https://doi.org/10.1016/j.phymed.2020.153330.

70. Ding B, Lin C, Liu Q et al. Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro. J Neuroinflammation. 2020;17(1):302. https://doi.org/10.1186/s12974-020-01981-4.

71. Shan X, Xiao Y, Hong B et al. Phytochemical profile and protective effects on myocardial ischaemia-reperfusion injury of sweated and non-sweated Salvia miltiorrhiza. Bge alcoholic extracts. J Pharm Pharmacol. 2022;74(9):1230-1240. https://doi.org/10.1093/jpp/rgac012.

72. Chen X, Tian C, Zhang Z et al. Astragaloside IV Inhibits NLRP3 Inflammasome- Mediated Pyroptosis via Activation of Nrf-2/HO-1 Signaling Pathway and Protects against Doxorubicin-Induced Cardiac Dysfunction. Front Biosci (Landmark Ed). 2023;28(3):45. https://doi.org/10.31083/j.fbl2803045.

73. Han X, Yu T, Chen X, Du Z, Yu M, Xiong J. Effect of Astragalus membranaceus on left ventricular remodeling in HFrEF: a systematic review and meta-analysis. Front Pharmacol. 2024;15:1345797. https://doi.org/10.3389/fphar.2024.1345797.

74. Yang C, Zhu Q, Chen Y et al. Review of the Protective Mechanism of Curcumin on Cardiovascular Disease. Drug Des Devel Ther. 2024;18:165-192. https://doi.org/10.2147/DDDT.S445555.

75. Wang S, Yang X. Eleutheroside E decreases oxidative stress and NF-κB activation and reprograms the metabolic response against hypoxia-reoxygenation injury in H9c2 cells. Int Immunopharmacol. 2020;84:106513. https://doi.org/10.1016/j.intimp.2020.106513.

76. Stansbury J, Saunders P, Winston D. Supporting Adrenal Function with Adaptogenic Herbs. Journal of Restorative Medicine. 2012;1(1):76-82.

77. Chen J, Huang Q, Li J et al. Panax ginseng against myocardial ischemia/reperfusion injury: A review of preclinical evidence and potential mechanisms. J Ethnopharmacol. 2023;300:115715. https://doi.org/10.1016/j.jep.2022.115715.

78. Huang Q, Yao Y, Wang Y et al. Ginsenoside Rb2 inhibits p300-mediated SF3A2 acetylation at lysine 10 to promote Fscn1 alternative splicing against myocardial ischemic/reperfusion injury. J Adv Res. 2024;65:365-379. https://doi.org/10.1016/j.jare.2023.12.012.

79. Sarkar C, Quispe C, Jamaddar S et al. Therapeutic promises of ginkgolide A: A literature-based review. Biomed Pharmacother. 2020;132:110908. https://doi.org/10.1016/j.biopha.2020.110908.

80. Walesiuk A, Trofimiuk E, Braszko JJ. Ginkgo biloba normalizes stress- and corticosterone-induced impairment of recall in rats. Pharmacol Res. 2006;53(2):123-128. https://doi.org/10.1016/j.phrs.2005.09.007.

81. Peng Y, Lin Y, Yu NW, Liao XL, Shi L. [The Clinical Efficacy and Possible Mechanism of Combination Treatment of Cerebral Ischemic Stroke with Ginkgo Biloba Extract and Low-Frequency Repetitive Transcranial Magnetic Stimulation]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2021;52(5):883-889 (In Chin.). https://doi.org/10.12182/20210960202.

82. Zhao X, Xiang Y, Cai C, Zhou A, Zhu N, Zeng C. Schisandrin B protects against myocardial ischemia/reperfusion injury via the PI3K/Akt pathway in rats. Mol Med Rep. 2018;17(1):556-561. https://doi.org/10.3892/mmr.2017.7926.

83. Giridharan VV, Thandavarayan RA, Arumugam S et al. Schisandrin B Ameliorates ICV-Infused Amyloid β Induced Oxidative Stress and Neuronal Dysfunction through Inhibiting RAGE/NF-κB/MAPK and Up-Regulating HSP/Beclin Expression. PLoS One. 2015;10(11):e0142483. https://doi.org/10.1371/journal.pone.0142483.

84. Yang J, Zhou D, Hu J, Yang DH, Cai Y, Lu Q. Schisandrin B attenuates bleomycin-induced pulmonary fibrosis in mice through AKT-mTOR pathway. Sarcoidosis Vasc Diffuse Lung Dis. 2024;41(3):e2024034. https://doi.org/10.36141/svdld.v41i3.12728.

85. Zhao A, Liu N, Jiang G et al. Combination of panax ginseng and ginkgo biloba extracts attenuate cerebral ischemia injury with modulation of NLRP3 inflammasome and CAMK4/CREB pathway. Front Pharmacol. 2022;13:980449. https://doi.org/10.3389/fphar.2022.980449.

86. Cong W, Sheng L, Li Y, Li P, Lin C, Liu J. [Protective effects of ginseng-ginko extracts combination on rat primary cultured neurons induced by Abeta(1-40)]. Zhongguo Zhong Yao Za Zhi. 2011;36(7):908-11 (In Chin.).


Review

For citations:


Zolotov A.N., Li J., Wang N., Priymak A.B., Korpacheva O.V., Klyuchnikova E.I., Toropov A.P. Treatment of cardiac contusion: experimental basis for pathogenetic therapy and emerging approaches in cardioprotection. The Eurasian Journal of Life Sciences. 2025;1(1):53-72. https://doi.org/10.47093/3033-5493.2025.1.1.53-72

Views: 52


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3033-5493 (Print)