Strategies for the development of photosensitizers
https://doi.org/10.47093/3033-5493.2025.1.1.32-42
Abstract
Conventional photosensitizing agents have inherent limitations regarding their effectiveness, selectivity, and potential adverse effects, which can hinder their clinical application in oncological practices. This study delves into innovative strategies aimed at the development of advanced photosensitizers that promise improved performance for clinical use. We present a comprehensive analysis of a range of molecules with diverse chemical structures, including novel nanomaterials and conjugated systems. These compounds demonstrate remarkable photostability and possess a high capacity for selectively targeting tumor tissues, which is crucial for enhancing therapeutic outcomes. In addition to discussing the improved properties of these next-generation photosensitizers, we provide an in-depth examination of their mechanisms of action, highlighting how they induce cytotoxic effects in cancer cells while minimizing harm to adjacent healthy tissues. The potential toxicity of these compounds has been scrutinized, considering both acute and long-term effects, with a focus on strategies to mitigate adverse side effects. Our research advocates for the importance of continued investigation into the development and optimization of photosensitizers, emphasizing their multi-disciplinary applications. By integrating insights from chemistry, pharmacology, and oncology, we aim to increase the overall effectiveness of photodynamic therapy. Furthermore, we explore the potential of these agents to extend their applicability beyond traditional treatment settings, suggesting their integration with other therapeutic modalities, such as chemotherapy and radiotherapy, which could lead to synergistic effects and significantly improve patient outcomes in cancer treatment.
About the Authors
O. V. ShevchenkoRussian Federation
Olga V. Shevchenko, Candidate of Biological Sciences, Researcher at the Multidisciplinary Laboratory Center, Head of the Scientific Department
ave Ostryakova, 2, Vladivostok, 690002
V. B. Shumatov
Russian Federation
Valentin B. Shumatov, Doctor of Medical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, Rector
ave Ostryakova, 2, Vladivostok, 690002
L. Yang
China
Lei Yang, Chief Physician, Professor, Director of the Department of Digital Orthopedics and Biotechnology Diagnosis and Treatment at the First Affiliated Hospital
23 Post Street, Nangang District, Heilongjiang Province, 150007
References
1. Algorri JF, Ochoa M, Roldan-Varona P, Rodriguez-Cobo L, Lopez-Higuera JM. Photodynamic therapy: A compendium of latest reviews. Cancers. 2021;13(17):4447. https://doi.org/10.3390/cancers13174447.
2. Maharjan PS, Bhattarai HK. Singlet oxygen, photodynamic therapy, and mechanisms of cancer cell death. J Oncol. 2022;2022(1):7211485. https://doi.org/10.1155/2022/7211485.
3. Medzhitov R. The spectrum of inflammatory responses. Science. 2021;374(6571): 1070-1075. https://doi.org/10.1126/science.abi5200.
4. Zhao X, Liu J, Fan J, Chao H, Peng X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chem Soc Rev. 2021;50(6):4185-4219. https://doi.org/10.1039/D0CS00173B.
5. Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem Rev. 2021;121(21):1345413619. https://doi.org/10.1021/acs.chemrev.1c00381.
6. Aires-Fernandes M, Botelho Costa R, Rochetti do Amaral S, Mussagy CU, SantosEbinuma VC, Primo FL. Development of biotechnological photosensitizers for photodynamic therapy: cancer research and treatment—from benchtop to clinical practice. Molecules. 2022;27(20):6848. https://doi.org/10.3390/molecules27206848.
7. Auler H, Banzer G. Untersuchungen über die Rolle der Porphyrine bei Geschwulstkranken Menschen und Tieren. Z Krebsforsch. 1942;53:65-68 (in German).
8. Aebisher D, Czech S, Dynarowicz K, Misiołek M, Komosińska-Vassev K, KawczykKrupka A, Bartusik-Aebisher D. Photodynamic therapy: past, current, and future. Int J Mol Sci. 2024;25(20):11325. https://doi.org/10.3390/ijms252011325.
9. Aebisher D, Szpara J, Bartusik-Aebisher D. Advances in medicine: photodynamic therapy. Int J Mol Sci. 2024;25(15):8258. https://doi.org/10.3390/ijms25158258.
10. Maziere JC, Pineau A, Pichon M, Doudin A, Dussossoy AL, Brouillaud B. Cellular uptake and photosensitizing properties of anticancer porphyrins in cell membranes and low and high density lipoproteins. J Photochem Photobiol B: Biol. 1990;6(12):61-68. https://doi.org/10.1016/1011-1344(90)85074-7.
11. Plekhova N, Shevchenko O, Korshunova O, Stepanyugina A, Tananaev I, Apanasevich V. Development of novel tetrapyrrole structure photosensitizers for cancer photodynamic therapy. Bioengineering. 2022;9(2):82. https://doi.org/10.3390/bioengineering9020082.
12. McCullough JL, Barlow W, Fuchs E, Gallo RL. Development of a topical hematoporphyrin derivative formulation: characterization of photosensitizing effects in vivo. J Investig Dermatol. 1983;81(6):528-532.
13. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018 Oct;106:10981107. https://doi.org/10.1016/j.biopha.2018.07.049.
14. Ailioaie LM, Ailioaie C, Litscher G. Latest innovations and nanotechnologies with curcumin as a nature-inspired photosensitizer applied in the photodynamic therapy of cancer. Pharmaceutics. 2021;13(10):1562. https://doi.org/10.3390/pharmaceutics13101562.
15. Sokolov VV, Chissov VI, Filonenko EV, Kozlov DN, Smirnov VV. Photodynamic therapy of cancer with the photosensitizer PHOTOGEM. Proc SPIE Int Soc Opt Eng. 1995;2325:367-374. https://doi.org/10.1117/12.199169.
16. Tavakkoli Yaraki M, Liu B, Tan YN. Emerging strategies in enhancing singlet oxygen generation of nano-photosensitizers toward advanced phototherapy. Nano-Micro Lett. 2022;14(1):123. https://doi.org/10.1007/s40820-022-00856-y.
17. Mirza Z, Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin Cancer Biol. 2021;69:226-237. https://doi.org/10.1016/j.semcancer.2019.10.020.
18. Seyed MA, Mahmoud E. Photosensitizing herbs as potential therapeutics: a prospective insight into their mechanisms for the development of novel drug leads in war with cancer and other human diseases. Open Access Maced J Med Sci. 2024;12(2):234-246. https://doi.org/10.3889/oamjms.2024.11883.
19. Lin Y, Xie R, Yu T. Photodynamic therapy for atherosclerosis: past, present, and future. Pharmaceutics. 2024;16(6):729. https://doi.org/10.3390/pharmaceutics16060729.
20. Kumari P, Rompicharla SVK, Bhatt H, Ghosh B, Biswas S. Development of chlorin e6-conjugated poly(ethylene glycol)-poly(d,l-lactide) nanoparticles for photodynamic therapy. Nanomedicine (Lond). 2019 Apr;14(7):819-834. https://doi.org/10.2217/nnm-2018-0255.
21. Wu C, Zhang Y, Wei X, Li N, Huang H, Xie Z, et al. Tumor homing-penetrating and nanoenzyme-augmented 2D phototheranostics against hypoxic solid tumors. Acta Biomater. 2022;150:391-401. https://doi.org/10.1016/j.actbio.2022.07.044.
22. Lu H, Li W, Qiu P, Zhang X, Qin J, Cai Y, Lu X. MnO2 doped graphene nanosheets for carotid body tumor combination therapy. Nanoscale Adv. 2022;4(20):4304-4313. https://doi.org/10.1039/D2NA00086E.
23. Wang Y, Cai D, Wu H, Fu Y, Cao Y, Zhang Y, et al. Functionalized Cu3BiS3 nanoparticles for dual-modal imaging and targeted photothermal/photodynamic therapy. Nanoscale. 2018;10(9):4452-4462. https://doi.org/10.1039/C7NR07458A.
24. Bourdon O, et al. Biodistribution of meta-tetra (hydroxyphenyl) chlorin incorporated into surface-modified nanocapsules in tumor-bearing mice. Photochem Photobiol Sci. 2002;1:709-714. https://doi.org/10.1039/b205282b.
25. Pathak P, Zarandi MA, Zhou X, Jayawickramarajah J. Synthesis and applications of porphyrin-biomacromolecule conjugates. Front Chem. 2021;9:764137. https://doi.org/10.3389/fchem.2021.764137.
26. Tran P, Weldemichael T, Liu Z, Li HY. Delivery of oligonucleotides: efficiency with lipid conjugation and clinical outcome. Pharmaceutics. 2022;14(2):342. https://doi.org/10.3390/pharmaceutics14020342.
27. Stulz E. Bio-inspired functional DNA architectures. In: Molecular Architectonics and Nanoarchitectonics. 2022:259-280. https://doi.org/10.1007/978-981-16-4189-3.
28. Arseneault M, Wafer C, Morin JF. Recent advances in click chemistry applied to dendrimer synthesis. Molecules. 2015;20(5):9263-9294. https://doi.org/10.3390/molecules20059263.
29. Umezawa N, Matsumoto N, Iwama S, Kato N, Higuchi T. Facile synthesis of peptide–porphyrin conjugates: towards artificial catalase. Bioorg Med Chem. 2010;18(17):6340-6350. https://doi.org/10.1016/j.bmc.2010.07.018.
30. Aioub AG, Dahora L, Gamble K, Finn MG. Selection of natural peptide ligands for copper-catalyzed azide–alkyne cycloaddition catalysis. Bioconjug Chem. 2017;28(6):1693-1701. https://doi.org/10.1021/acs.bioconjchem.7b00161.
31. Dondi R, Yaghini E, Tewari KM, Wang L, et al. Flexible synthesis of cationic peptide–porphyrin derivatives for light-triggered drug delivery and photodynamic therapy. Org Biomol Chem. 2016;14(48):11488-11501. https://doi.org/10.1039/C6OB02135B.
32. Renault K, et al. Covalent modification of biomolecules through maleimidebased labeling strategies. Bioconjug Chem. 2018;29(8):2497-2513. https://doi.org/10.1021/acs.bioconjchem.8b00252.
33. Ravi S, et al. Maleimide–thiol coupling of a bioactive peptide to an elastin-like protein polymer. Acta Biomater. 2012;8(2):627-635. https://doi.org/10.1016/j.actbio.2011.10.027.
34. Liu F, et al. Lipopolysaccharide neutralizing peptide–porphyrin conjugates for effective photoinactivation and intracellular imaging of Gram-negative bacteria strains. Bioconjug Chem. 2012;23(8):1639-1647. https://doi.org/10.1021/bc300203d.
35. Tam JP, Xu J, Eom KD. Methods and strategies of peptide ligation. Biopolymers. 2001;60(3):194-205. https://doi.org/10.1002/1097-0282(2001)60:3<194::AID-BIP10031>3.0.CO;2-8.
36. Egashira Y, Kono N, Tarutani N, Katagiri K, Hino S, Yamana K, Kawasaki R, Ikeda A. Formation of Poly-L-Lysine-Porphyrin Derivative Complex Exhibiting Diminished Dark Toxicity in Aqueous Solutions and High Photodynamic Activity. ChemBioChem. 2024;25(4):e202400926. https://doi.org/10.1002/cbic.202400926.
37. Chari RV, Miller ML, Widdison WC. Antibody–drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed. 2014;53(15):3796-3827. https://doi.org/10.1002/anie.201307628.
38. Mew D, et al. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol. 1983;130(3):14731477.
39. Hemming AW, Davis NL, Dubois B, Quenville NF, Finley RJ. Photodynamic therapy of squamous cell carcinoma: an evaluation of a new photosensitizing agent, benzoporphyrin derivative, and new photoimmunoconjugate. Surg Oncol. 1993;2:187-196.
40. Li C. Poly (L-glutamic acid)–anticancer drug conjugates. Adv Drug Deliv Rev. 2002;54(5):695-713. https://doi.org/10.1016/S0169-409X(02)00045-5.
41. Smith K, et al. Mono- and tri-cationic porphyrin–monoclonal antibody conjugates: photodynamic activity and mechanism of action. Immunology. 2011;132(2):256-265. https://doi.org/10.1111/j.1365-2567.2010.03359.x.
42. Pereira PMR, Korsak B, Sarmento B, Schneider RJ, Fernandes R, Tomé JPC. Antibodies armed with photosensitizers: from chemical synthesis to photobiological applications. Org Biomol Chem. 2015;13(3):2518-2529. https://doi.org/10.1039/C4OB02334J.
43. Pereira PMR, Carvalho JJ, Silva S, Cavaleiro JAS, Schneider RJ, Fernandes R, et al. Porphyrin conjugated with serum albumins and monoclonal antibodies boosts efficiency in targeted destruction of human bladder cancer cells. Org Biomol Chem. 2014;12(11):1804-1811. https://doi.org/10.1039/C3OB42082E.
44. Maruani A, Savoie H, Bryden F, Caddick S, Boyle R, Chudasama V. Site-selective multi-porphyrin attachment enables the formation of a next-generation antibodybased photodynamic therapeutic. Chem Commun. 2015;51(89):15304-15307. https://doi.org/10.1039/C5CC06985H.
45. Shinoda Y, et al. Novel photosensitizer β-mannose-conjugated chlorin e6 as a potent anticancer agent for human glioblastoma U251 cells. Pharmaceuticals. 2020;13(10):316. https://doi.org/10.3390/ph13100316.
46. Wu F, et al. Metalloporphyrin–indomethacin conjugates as new photosensitizers for photodynamic therapy. JBIC J Biol Inorg Chem. 2019;24:53-60. https://doi.org/10.1007/s00775-018-1626-9.
Review
For citations:
Shevchenko O.V., Shumatov V.B., Yang L. Strategies for the development of photosensitizers. The Eurasian Journal of Life Sciences. 2025;1(1):32-42. https://doi.org/10.47093/3033-5493.2025.1.1.32-42