Preview

The Eurasian Journal of Life Sciences

Advanced search

Modern trends in laser non-invasive reconstruction of biological tissues

https://doi.org/10.47093/3033-5493.2025.1.1.4-16

Abstract

The article focuses on contemporary methodologies for laser-based, non-invasive reconstruction of biological tissues. It examines the mechanisms of laser-tissue interaction, including photothermal processes and the formation of new molecular bonds. A range of laser systems – neodymium-doped yttriumaluminum garnet laser (Nd:YAG laser), carbon dioxide laser (CO2 laser), diode and their applications in vascular, micro- and plastic surgery are analyzed. The analysis is further enriched by a discussion of bioorganic solders, such as albumin and indocyanine green, and nanomaterials that have been shown to enhance bond strength and reduce thermal damage. Examples of successful applications of the technology for vascular and nerve repair, wound sealing, and plastic surgery are provided. Finally, future prospects are highlighted, including temperature control systems and personalized approaches. The text emphasizes the potential of laser methods as a minimally invasive alternative to traditional surgery.

About the Authors

V. V. Suchkova
Sechenov First Moscow State Medical University (Sechenov University); National Research University of Electronic Technology
Russian Federation

Victoria V. Suchkova, Junior Researcher, Institute for Bionic Technologies and Engineering; Assistant, Institute of Biomedical Systems

8/2, Trubetskaya str., Moscow, 119048

1, Shokin Square, Moscow, Zelenograd, 124498

 



D. I. Ryabkin
Sechenov First Moscow State Medical University (Sechenov University); National Research University of Electronic Technology
Russian Federation

Dmitry I. Ryabkin, Ph.D. (Phys.-Math.), Assistant, Institute for Bionic Technologies and Engineering; Associate Professor, Institute of Biomedical Systems

8/2, Trubetskaya str., Moscow, 119048

1, Shokin Square, Moscow, Zelenograd, 124498



L. Yang
The First Affiliated Hospital of Harbin Medical University
China

Lei Yang, Ph.D., Professor, Director, Department of Orthopedics

23 Youzheng Street, Harbin, Heilongjiang, 150001



D. V. Telyshev
Sechenov First Moscow State Medical University (Sechenov University); National Research University of Electronic Technology
Russian Federation

Dmitry V. Telyshev, Dr. Sc. (Engineering), Associate Professor, Director, Institute for Bionic Technologies and Engineering; Professor, Institute of Biomedical Systems

8/2, Trubetskaya str., Moscow, 119048

1, Shokin Square, Moscow, Zelenograd, 124498



A. Yu. Gerasimenko
Sechenov First Moscow State Medical University (Sechenov University); National Research University of Electronic Technology
Russian Federation

Alexander Yu. Gerasimenko, Dr. Sc. (Engineering), Associate Professor, Head of Biomedical Nanotechnology Laboratory, Institute for Bionic Technologies and Engineering; Head of Biomedical Nanotechnology Laboratory, Institute of Biomedical Systems

8/2, Trubetskaya str., Moscow, 119048

1, Shokin Square, Moscow, Zelenograd, 124498



References

1. Basov S, Milstein A, Sulimani E, Platkov M, Peretz E, Rattunde M, Wagner J. Netz. U, Katzir A, Nisky I. Robot-assisted laser tissue soldering system. Biomed. Opt. Express. 2018;9(12):5635-5644. https://doi.org/10.1364/BOE.9.005635.

2. Legres LG, Chamot C, Varna M, Janin A. The Laser Technology: New Trends in Biology and Medicine. J. Mod. Phys. 2014;5(5):330-337. https://doi.org/10.4236/jmp.2014.55037

3. Prahl SA, Pearson SD. Rate process models for thermal welding. Laser-Tissue Interaction VIII. 1997;2975:245-252. https://doi.org/10.1117/12.275486.

4. Le Lous M, Flandin F, Herbage D, Allain JC. Influence of collagen denaturation on the chemorheological properties of skin, assessed by differential scanning calorimetry and hydrothermal isometric tension measurement. Biochim Biophys Acta Gen Subj. 1982;717(2):295-300. https://doi.org/10.1016/0304-4165(82)90182-9.

5. Bianchi L, Cavarzan F, Ciampitti L, Cremonesi M, Grilli F, Saccomandi P. Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review. Int J Hyperthermia. 2022;39(1):297-340. https://doi.org/10.1080/02656736.2022.2028908.

6. Bass LS, Moazami N, Pocsidio J, Oz MC, Logerfo P, Treat MR. Changes in type I collagen following laser welding. Lasers Surg Med. 1992;12(5):500-505. https://doi.org/10.1002/lsm.1900120508.

7. Small IV W, Celliers P, Kopchok G. Temperature feedback and collagen crosslinking in argon laser vascular welding. Lasers Med Sci. 1998;13:98-105. https://doi.org/10.1007/s101030050061.

8. Schober R, Ulrich F, Sander T, Dürselen H, Hessel S. Laser-induced alteration of collagen substructure allows microsurgical tissue welding. Science. 1986;232(4756):1421-1422. https://doi.org/10.1126/science.3715454.

9. Mushaben M, Urie R, Flake T, Jaffe M, Rege K, Heys J. Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites. Lasers Surg. Med. 2018;50(2):143-152. https://doi.org/10.1002/lsm.22746.

10. Vescovi P, Merigo E, Fornaini C, Rocca J, Nammour S. Thermal increase in the oral mucosa and in the jawbone during Nd:YAG laser applications: ex vivo study. Med Oral Patol Oral Cir Bucal. 2012;17(4):e697-e704. https://doi.org/10.4317/medoral.17726.

11. Pirnat S, Lukac M, Ihan A. Study of the direct bactericidal effect of Nd:YAG and diode laser parameters used in endodontics on pigmented and nonpigmented bacteria. Lasers Med Sci. 2011;26:755-761. https://doi.org/10.1007/s10103-010-0808-7.

12. Li C, Wang K, Huang J. Effect of scanning modes on the tensile strength and stability in laser skin welding in vitro. Optik. 2019;179:408-412. https://doi.org/10.1016/j.ijleo.2018.10.037.

13. Li C, Wang K. Effect of welding temperature and protein denaturation on strength of laser biological tissue welding. Opt Laser Technol. 2021;138:106862. https://doi.org/10.1016/j.optlastec.2020.106862.

14. Gomes DF, Galvão I, Loja MAR. Overview on the evolution of laser welding of vascular and nervous tissues. Appl Sci. 2019;9(10):2157. https://doi.org/10.3390/app9102157.

15. Gil Z, Shaham A, Vasilyev T, Brosh T, Forer B, Katzir A, & Fliss DM. Novel laser tissue-soldering technique for dural reconstruction. J Neurosurg. 2005;103(1):87-91. https://doi.org/10.3171/jns.2005.103.1.0087.

16. Strassmann E, Livny E, Loy N, Kariv N, Ravid A, Katzir A, Gaton DD. CO2 laser welding of corneal cuts with albumin solder using radiometric temperature control. Ophthalmic Res. 2013;50:174-179. https://doi.org/10.1159/000353436.

17. Ashbell I, Agam N, Katzir A, Basov S, Platkov M, Avital I, Netz U. Laser tissue soldering of the gastrointestinal tract: A systematic review. Heliyon. 2023;9(5):e16018. https://doi.org/10.1016/j.heliyon.2023.e16018.

18. Rossi F, Matteini P, Ratto F, Pini R, Esposito G, Albanese A, et al. Experimental study on laser assisted vascular repair and anastomosis with ICG-infused chitosan films. In: 2011 International Workshop on Biophotonics; June 2011; 1-3. https://doi.org/10.1109/IWBP.2011.5954804.

19. Nakadate R, Omori S, Ikeda T, Akahoshi T, Oguri S, Arata J, et al. Improving the strength of sutureless laser-assisted vessel repair using preloaded longitudinal compression on tissue edge. Lasers Surg Med. 2017;49(5):533-538. https://doi.org/10.1002/lsm.22621.

20. Ott B, Constantinescu MA, Erni D, Banic A, Schaffner T, Frenz M. Intraluminal laser light source and external solder: in vivo evaluation of a new technique for microvascular anastomosis. Lasers Surg Med. 2004;35(4):312-316. https://doi.org/10.1002/lsm.20096.

21. Leclère FM, Schoofs M, Vogt P, Mordon S. 1950-nm diode laser-assisted microanastomoses (LAMA): an innovative surgical tool for hand surgery emergencies. Lasers Med Sci. 2015;30(4): 1269-1273. https://doi.org/10.1007/s10103-015-1711-z.

22. Leclère FM, Vogt P, Schoofs M, Delattre M, Mordon S. Current laser applications in reconstructive microsurgery: a review of the literature. J Cosmet Laser Ther. 2016;18(3):130-133. https://doi.org/10.3109/14764172.2015.1114640.

23. Gerasimenko AY, Morozova EA, Ryabkin DI, Fayzullin A, Tarasenko SV, Molodykh VV, et al. Reconstruction of soft biological tissues using laser soldering technology with temperature control and biopolymer nanocomposites. Bioengineering (Basel). 2022;9(6):238. https://doi.org/10.3390/bioengineering9060238.

24. Mistry YA, Natarajan SS, Ahuja SA. Evaluation of Laser Tissue Welding and LaserTissue Soldering for Mucosal and Vascular Repair. Annals of Maxillofacial Surgery. 2018;8(1):35-41. https://doi.org/10.4103/ams.ams_147_17.

25. Ryabkin DI, Rimshan IB, Gerasimenko AY, Pyankov ES, Zar VV. Research of dependence of the laser weld tensile strength on the protein denaturation temperature, which is part of the solder. In: 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus); February 2017; St. Petersburg, Russia. p68-70. https://doi.org/10.1109/EIConRus.2017.7910494.

26. Jawale SA. Suture-less circumcision by glutaraldehyde albumin glue enhanced laser tissue welding—a comparative study. Open J Urol. 2019;9(7):107. https://doi.org/10.4236/oju.2019.97013.

27. Tal K, Strassmann E, Loya N, Ravid A, Kariv N, Weinberger D, et al. Corneal cut closure using temperature-controlled CO2 laser soldering system. Lasers Med Sci. 2015;30:1367-1371. https://doi.org/10.1007/s10103-015-1737-2.

28. Gerasimenko AY, Ichkitidze LP, Piyankov ES, Pyanov IV, Rimshan IB, Ryabkin DI, et al. Use of indocyanine green in nanocomposite solders to increase strength and homogeneity in laser welding of tendons. Biomed Eng. 2017;50:310-313. https://doi.org/10.1007/s10527-017-9644-4.

29. Wu T, Li H, Xue J, Mo X, Xia Y. Photothermal welding, melting, and patterned expansion of nonwoven mats of polymer nanofibers for biomedical and printing applications. Angew Chem Int Ed Engl. 2019;58(46):16416-16421. https://doi.org/10.1002/anie.201907876.

30. Lim ZY, Mohan S, Balasubramaniam S, Ahmed S, Siew CCH, Shelat VG. Indocyanine green dye and its application in gastrointestinal surgery: the future is bright green. World J Gastrointest Surg. 2023;15(9):1841-1857. https://doi.org/10.4240/wjgs.v15.i9.1841.

31. Khan I, Saeed K, Zekker I, Zhang B, Hendi AH., Ahmad A, et al. Review on methylene blue: its properties, uses, toxicity and photodegradation. Water (Basel). 2022;14(2):242. https://doi.org/10.3390/w14020242.

32. Rau I, Tane A, Zgarian R, Meghea A, Grote JG, et al. Stability of Selected Chromophores in Biopolymer Matrix. Molecular Crystals and Liquid Crystals. 2012;554(1):43– 55. https://doi.org/10.1080/15421406.2012.633025.

33. Esposito G, Rossi F, Matteini P, Scerrati A, Puca A, Albanese A, et al. In vivo laser assisted microvascular repair and end-to-end anastomosis by means of indocyanine green-infused chitosan patches: a pilot study. Lasers Surg Med. 2013;45(5):318-325. https://doi.org/10.1002/lsm.22145.

34. Torres-Martínez E.J, Cornejo Bravo JM, Serrano Medina A, Pérez González GL, Villarreal Gómez LJ. A summary of electrospun nanofibers as drug delivery system: drugs loaded and biopolymers used as matrices. Curr Drug Deliv. 2018;15(10):1360- 1374. https://doi.org/10.2174/1567201815666180723114326.

35. Ivanov D. Methods and challenges in the fabrication of biopolymer-based scaffolds for tissue engineering application. In: Functional Biomaterials: Design and Development for Biotechnology, Pharmacology, and Biomedicine. 1st ed. Wiley-VCH; 2023:335-370. https://doi.org/10.1002/9783527827657.ch11.

36. Hu Z, Qin Z, Qu Y, Wang F, Huang B, Chen G, et al. Cell electrospinning and its application in wound healing: principles, techniques and prospects. Burns Trauma. 2023;11:tkad028. https://doi.org/10.1093/burnst/tkad028.

37. Bregy A, Bogni S, Bernau VJ, Vajtai I, Vollbach F, Petri-Fink A, et al. Solder doped polycaprolactone scaffold enables reproducible laser tissue soldering. Lasers in Surgery and Medicine. 2008;40(10):716–725. https://doi.org/10.1002/lsm.20710.

38. Schöni DS, Bogni S, Bregy A, Wirth A, Raabe A, Vajtai I, et al. Nanoshell assisted laser soldering of vascular tissue. Lasers in Surgery and Medicine. 2011;43(10):975– 983. https://doi.org/10.1002/lsm.21140.

39. Matteini P, Ratto F, Rossi F, Pini R. Laser-activated nano-biomaterials for tissue repair and controlled drug release. Quantum Electronics. 2014;44(7):675. https://doi.org/10.1070/QE2014v044n07ABEH015484.

40. Frost SJ, Mawad D, Hook J, Lauto A. Micro- and nanostructured biomaterials for sutureless tissue repair. Adv Healthc Mater. 2016;5(4):401-414. https://doi.org/10.1002/adhm.201500589.

41. Matteini P, Ratto F, Rossi F, Pini R. Emerging concepts of laser-activated nanoparticles for tissue bonding. J Biomed Opt. 2012;17(1):010701. https://doi.org/10.1117/1.JBO.17.1.010701.

42. Cai Z, Zhang H, Wei Y, Cong F. Hyaluronan-inorganic nanohybrid materials for biomedical applications. Biomacromolecules. 2017;18(6):1677-1696. https://doi.org/10.1021/acs.biomac.7b00424.

43. Gerasimenko AY, Gubar’kov OV, Ichkitidze LP, Podgaetskii VM, Selishchev SV, Ponomareva OV. Nanocomposite solder for laser welding of biological tissues. Semiconductors. 2011;45:1713-1718. https://doi.org/10.1134/S1063782611130112.

44. Gerasimenko AY, Ichkitidze LP, Podgaetsky VM, Selishchev SV. Biomedical applications of promising nanomaterials with carbon nanotubes. Biomed Eng. 2015;48(6):310-314. https://doi.org/0006-3398/15/4806-0310.

45. Sun Y, Liu X, George MN, Park S, Gaihre B, Terzic A, Lu L. Enhanced nerve cell proliferation and differentiation on electrically conductive scaffolds embedded with graphene and carbon nanotubes. J Biomed Mater Res A. 2021;109(2):193-206. https://doi.org/10.1002/jbm.a.37016.

46. Ye L, Ji H, Liu J, Tu CH, Kappl M, Koynov K, et al. Carbon nanotube-hydrogel composites facilitate neuronal differentiation while maintaining homeostasis of network activity. Adv Mater. 2021;33(41):2102981. https://doi.org/10.1002/adma.202102981.

47. Gerasimenko AY, Glukhova OE, Savostyanov GV, Podgaetsky VM. Laser structuring of carbon nanotubes in the albumin matrix for the creation of composite biostructures. J Biomed Opt. 2017;22(6):065003. https://doi.org/10.1117/1.JBO.22.6.065003.

48. Wang M, Guo H, Zhang G, Ruan P, Zhi K. Development and Innovation of Modern Microvascular Anastomoses. Journal of Biosciences and Medicines. 2024;12:105– 118. https://doi.org/10.4236/jbm.2024.1210011.

49. Hiebl B, Ascher L, Luetzow K, Kratz K, Gruber C, Mrowietz C, et al. Albumin solder covalently bound to a polymer membrane: new approach to improve binding strength in laser tissue soldering in-vitro. Clin Hemorheol Microcirc. 2018;69(12):317-326. https://doi.org/10.3233/CH-189108.

50. Rasca E, Nyssen-Behets C, Tielemans M, Peremans A, Hendaoui N, Heysselaer D, et al. Gingiva laser welding: preliminary study on an ex vivo porcine model. Photomed Laser Surg. 2014;32(8):437-443. https://doi.org/10.1089/pho.2013.3662.

51. Fekrazad R, Mortezai O, Pedram M, Kalhori KA, Joharchi K, Mansoori K, et al. Transected sciatic nerve repair by diode laser protein soldering. J Photochem Photobiol B. 2017;173:441-447. https://doi.org/10.1016/j.jphotobiol.2017.06.008.

52. Schiavon M, Marulli G, Zuin A, Lunardi F, Villoresi P, Bonora S., et al. Experimental evaluation of a new system for laser tissue welding applied on damaged lungs. Interact Cardiovasc Thorac Surg. 2013;16(5):577-582. https://doi.org/10.1093/icvts/ivt029.

53. Urie R, Quraishi S, Jaffe M, Rege K. Gold nanorod-collagen nanocomposites as photothermal nanosolders for laser welding of ruptured porcine intestines. ACS Biomater Sci Eng. 2018;4(9):805-815. https://doi.org/10.1021/acsbiomaterials.5b00174.

54. Galichenko KA, Ryabkin DI, Suchkova VV, Blinov KD, Dydykin SS, Istranov AL, et al. Comparative evaluation of tissue fusion efficacy in laser-assisted flap plasty (experimental study). Russ J Oper Surg Clin Anat. 2024;8(2):5-11. https://doi.org/10.17116/OPERHIRURG202480215.

55. Ryabkin DI, Suchkova VV, Gerasimenko AY. Prediction of tensile strength of biotissue laser welds by machine learning methods. Biomed Eng. 2023;57:112-115. https://doi.org/10.1007/s10527-023-10280-0.


Review

For citations:


Suchkova V.V., Ryabkin D.I., Yang L., Telyshev D.V., Gerasimenko A.Yu. Modern trends in laser non-invasive reconstruction of biological tissues. The Eurasian Journal of Life Sciences. 2025;1(1):4-16. https://doi.org/10.47093/3033-5493.2025.1.1.4-16

Views: 65


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3033-5493 (Print)