The potential possibility of nonlinear recurrence methods application for posttraumatic stress disorder investigation
https://doi.org/10.47093/3033-5493.2025.1.1.17-31
Abstract
This article describes methods of nonlinear physics related to recurrent analysis that may be useful in studying the effect of posttraumatic stress disorder on sleep disorders. Traditional pharmacological and psychotherapeutic approaches widely used to treat post-traumatic stress disorder require longterm and painstaking work, combining the joint efforts of clinical specialists and the patient. The versatility and variability of the clinical picture of this disease makes the diagnosis and treatment of post-traumatic stress disorder syndromes particularly difficult. In particular, only in International Classification of Diseases 11th Revision was complex post-traumatic stress disorder isolated from the general group of dissociative disorders. However, one of the few unifying characteristics for such patients is significant disruption of night sleep. Currently, mathematical methods, pumped from nonlinear physics, are often used to analyze physiological signals and assess the condition of patients with various diseases, including depression, chronic migraines, and apnea syndrome. However, recurrent analysis has not been used to date in the study of post-traumatic stress disorder. We are confident, based on the successful application of this method to the study of patients with migraines, orthodontic disorders, and sleep disorders, that this is a major omission and scientists working on the problem of post-traumatic stress disorder should pay close attention to the methods proposed in this article for a comprehensive study of the problem. Careful application of the proposed methods will undoubtedly contribute to the study of the effect of various psychiatric diseases on sleep, including posttraumatic stress disorder, and will help to develop more advanced methods of gentle rehabilitation.
About the Authors
A. E. RunnovaRussian Federation
Anastasiya E. Runnova, MD, Head of the Department of Biophysics and Digital Technologies
str. Bolshaya Kazachya, 112, Saratov, 410012
A. O. Selskii
Russian Federation
Anton O. Selskii, Candidate of Physical and Mathematical Sciences, Senior Researcher, Institute of Physics
str. Bolshaya Kazachya, 112, Saratov, 410012
E. P. Emelyanova
Russian Federation
Elizaveta P. Emelyanova, Postgraduate student, Institute of Physics; junior research, Research Laboratory «Open Biosystems and Artificial Intelligence»
str. Astrakhanskaya, 83, 410012
str. Bolshaya Kazachya, 112, Saratov, 410012
A. S. Fedonnikov
Russian Federation
Aleksandr S. Fedonnikov, MD, Vice-Rector for Research
str. Bolshaya Kazachya, 112, Saratov, 410012
References
1. Brewin CR, Cloitre M, Hyland P, et al. A review of current evidence regarding the ICD-11 proposals for diagnosing PTSD and complex PTSD. Clin Psychol Rev. 2017; 58:1-15. https://doi.org/10.1016/j.cpr.2017.09.001.
2. Ressler KJ, Berretta S, Bolshakov VY, et al. Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nat Rev Neurol. 2022 May;18(5):273-288. https://doi.org/10.1038/s41582-022-00635-8.
3. Helzer JE, Robins LN, McEvoy L. Post-traumatic stress disorder in the general population. Findings of the epidemiologic catchment area survey. N Engl J Med. 1987 Dec 24;317(26):1630-4. https://doi.org/10.1056/nejm198712243172604.
4. Maercker A, Cloitre M, Bachem R, et al. Complex post-traumatic stress disorder. Lancet. 2022; 400(10345):60-72. https://doi.org/10.1016/s0140-6736(22)00821-2.
5. Wilcox HC, Storr CL, Breslau N. Posttraumatic stress disorder and suicide attempts in a community sample of urban american young adults. Arch Gen Psychiatry. 2009 Mar;66(3):305-11. https://doi.org/10.1001/archgenpsychiatry.2008.557.
6. Bernal M, Haro JM, Bernert S, et al. ESEMED/MHEDEA Investigators. Risk factors for suicidality in Europe: results from the ESEMED study. J Affect Disord. 2007 Aug;101(1-3):27-34. https://doi.org/10.1016/j.jad.2006.09.018.
7. Taft CT, Watkins LE, Stafford J, et al. Posttraumatic stress disorder and intimate relationship problems: a meta-analysis. J Consult Clin Psychol. 2011 Feb;79(1):22-33. https://doi.org/10.1037/a0022196.
8. Martins SN, Teixeira T, Quarenta J, Ribeiro B. Post-traumatic Stress Disorder. In: Esquinas, A.M., Fabbo, A., Koc, F., Prymus, A., Farnik, M. (eds) Noninvasive Mechanical Ventilation and Neuropsychiatric Disorders. Springer. 2023; http://dx.doi.org/10.1007/978-3-031-27968-3_35.
9. Horowitz MJ, Wilner N, Kaltreider N, Alvarez W. Signs and symptoms of posttraumatic stress disorder. Arch Gen Psychiatry. 1980 Jan;37(1):85-92. https://doi.org/10.1001/archpsyc.1980.01780140087010.
10. Lu MY, Ahorsu DK, Kukreti S, et al. The Prevalence of Post-traumatic Stress Disorder Symptoms, Sleep Problems, and Psychological Distress Among COVID-19 Frontline Healthcare Workers in Taiwan. Front Psychiatry. 2021 Jul 12;12:705657. https://doi.org/10.3389/fpsyt.2021.705657.
11. Fung HW, Chien WT, Lam SKK, Ross CA. The Relationship Between Dissociation and Complex Post-Traumatic Stress Disorder: A Scoping Review. Trauma Violence Abuse. 2023 Dec;24(5):2966-2982. https://doi.org/10.1177/15248380221120835.
12. Ahmadi R, Rahimi-Jafari S, Olfati M, et al. Insomnia and post-traumatic stress disorder: A meta-analysis on interrelated association (n = 57,618) and prevalence (n = 573,665). Neurosci Biobehav Rev. 2022 Oct;141:104850. https://doi.org/10.1016/j.neubiorev.2022.104850.
13. Baranwal N, Yu PK, Siegel NS. Sleep physiology, pathophysiology, and sleep hygiene. Prog Cardiovasc Dis. 2023; 77:59-69. https://doi.org/10.1016/j.pcad.2023.02.005.
14. Gonzaga C, Bertolami A, Bertolami M, et al. Obstructive sleep apnea, hypertension and cardiovascular diseases. J Hum Hypertens. 2015 Dec;29(12):705-12. https://doi.org/10.1038/jhh.2015.15.
15. Vanek J, Prasko J, Genzor S, et al. Obstructive sleep apnea, depression and cognitive impairment. Sleep Med. 2020 Aug;72:50-58. https://doi.org/10.1016/j.sleep.2020.03.017.
16. Zhuravlev M, Agaltsov M, Kiselev A, et al. Compensatory mechanisms of reduced interhemispheric EEG connectivity during sleep in patients with apnea. Sci Rep. 2023 May 25;13(1):8444. http://dx.doi.org/10.1038/s41598-023-35376-1.
17. Lanza G, Aricò D, Lanuzza B, et al. Facilitatory/inhibitory intracortical imbalance in REM sleep behavior disorder: early electrophysiological marker of neurodegeneration? Sleep. 2020 Mar 12;43(3):zsz242. https://doi.org/10.1093/sleep/zsz242.
18. Oh JY, Walsh CM, Ranasinghe K, et al. Subcortical Neuronal Correlates of Sleep in Neurodegenerative Diseases. JAMA Neurol. 2022 May 1;79(5):498-508. https://doi.org/10.1001/jamaneurol.2022.0429.
19. Scott-Massey A, Boag MK, Magnier A, et al. Glymphatic System Dysfunction and Sleep Disturbance May Contribute to the Pathogenesis and Progression of Parkinson’s Disease. Int J Mol Sci. 2022 Oct 26;23(21):12928. https://doi.org/10.3390/ijms232112928.
20. Steiger A, Pawlowski M. Depression and Sleep. Int J Mol Sci. 2019 Jan 31;20(3):607. https://doi.org/10.3390/ijms20030607.
21. Ferrarelli F. Sleep disturbances in schizophrenia and psychosis. Schizophr Res. 2020 Jul;221:1-3. https://doi.org/10.1016/j.schres.2020.05.022.
22. Hyun MK, Baek Y, Lee S. Association between digestive symptoms and sleep disturbance: a cross-sectional community-based study. BMC Gastroenterol. 2019 Feb 19;19(1):34. https://doi.org/10.1186/s12876-019-0945-9.
23. Mogavero MP, DelRosso LM, Fanfulla F, et al. Sleep disorders and cancer: State of the art and future perspectives. Sleep Med Rev. 2021 Apr;56:101409. https://doi.org/10.1016/j.smrv.2020.101409.
24. Spoormaker VI, Montgomery P. Disturbed sleep in post-traumatic stress disorder: secondary symptom or core feature? Sleep Med Rev. 2008 Jun;12(3):169-84. https://doi.org/10.1016/j.smrv.2007.08.008.
25. Miller KE, Brownlow JA, Woodward S, et al. Sleep and Dreaming in Posttraumatic Stress Disorder. Curr Psychiatry Rep. 2017;19(10):71. https://doi.org/10.1007/s11920-017-0827-1.
26. Zhang Y, Ren R, Sanford LD, et al. Sleep in posttraumatic stress disorder: A systematic review and meta-analysis of polysomnographic findings. Sleep Med Rev. 2019 Dec;48:101210. https://doi.org/10.1016/j.smrv.2019.08.004.
27. Grandner MA. Sleep, Health, and Society. Sleep Med Clin. 2017 Mar;12(1):1-22. https://doi.org/10.1016/j.jsmc.2016.10.012.
28. Mander BA, Winer JR, Walker MP. Sleep and Human Aging. Neuron. 2017 Apr 5;94(1):19-36 https://doi.org/10.1016/j.neuron.2017.02.004.
29. Dimitrov S, Lange T, Gouttefangeas C, et al. Gαs-coupled receptor signaling and sleep regulate integrin activation of human antigen-specific T cells. J Exp Med. 2019;216(3):517-526. https://doi.org/10.1084/jem.20181169.
30. Li F, Artiushin G, Sehgal A. Modulation of sleep by trafficking of lipids through the Drosophila blood-brain barrier. Elife. 2023; 12:e86336. https://doi.org/10.7554/eLife.86336.
31. Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain. Physiol Rev. 2022; 102(2):1025-1151. https://doi.org/10.1152/physrev.00031.2020.
32. Chang KKP, Wong FKY, Chan KL., et al. The Impact of the Environment on the Quality of Life and the Mediating Effects of Sleep and Stress. Int J Environ Res Public Health. 2020; 17(22):8529. https://doi.org/10.3390/ijerph17228529.
33. Tsenteradze SL, Poluektov MG. The effect of sleep disorders on health and the possibility of correction of sleep disorders. Medical Council. 2018;(18):30-33. https://doi.org/10.21518/2079-701X-2018-18-30-33.
34. Beaudin AE, Raneri JK, Ayas NT, et al. Canadian Sleep and Circadian Network. Contribution of hypercapnia to cognitive impairment in severe sleep-disordered breathing. J Clin Sleep Med. 2022 Jan 1;18(1):245-254. https://doi.org/10.5664/jcsm.9558.
35. Herrero Babiloni A, De Koninck BP, et al. Sleep and pain: recent insights, mechanisms, and future directions in the investigation of this relationship. J Neural Transm (Vienna). 2020 Apr;127(4):647-660. https://doi.org/10.1007/s00702-019-02067-z.
36. Medic G, Wille M, Hemels ME. Short- and long-term health consequences of sleep disruption. Nat Sci Sleep. 2017 May 19;9:151-161. https://doi.org/10.2147/nss.s134864
37. Cho YW, Kim KT, Moon HJ, et al. Comorbid Insomnia With Obstructive Sleep Apnea: Clinical Characteristics and Risk Factors. J Clin Sleep Med. 2018 Mar 15;14(3):409417. https://doi.org/10.5664/jcsm.6988.
38. Sugama S, Kakinuma Y. Stress and brain immunity: Microglial homeostasis through hypothalamus-pituitary-adrenal gland axis and sympathetic nervous system. Brain Behav. Immun. Health. 2020. V. 7. P. 100111. https://doi.org/10.1016/j.bbih.2020.100111.
39. Yehuda R, Flory J, Pratchett L. et al. Putative biological mechanisms for the association between early life adversity and the subsequent development of PTSD. Psychopharmacology. 2010. V. 212. № 3. P. 405-17. https://doi.org/10.1007/s00213-010-1969-6.
40. Dunn AJ. Cytokine activation of the HPA axis. Ann. N.Y. Acad. Sci. 2000. V. 917. P. 608–617. https://doi.org/10.1111/j.1749-6632.2000.tb05426.x.
41. Delahanty D, Raimonde A, Spoonster E. Initial posttraumatic urinary cortisol levels predict subsequent PTSD symptoms in motor vehicle accident victims. Biol. Psychiatry. 2000. V. 48. P. 940–947. https://doi.org/10.1016/S0006-3223(00)00896-9.
42. Witteveen AB, Huizink AC, Slottje P, Bramsen I, Smid T, Van Der Ploeg HM. Associations of cortisol with posttraumatic stress symptoms and negative life events: A study of police officers and firefighters. Psychoneuroendocrinology. 2010. V. 35. P. 1113–1118. https://doi.org/10.1016/j.psyneuen.2009.12.013.
43. Yehuda R, Bierer LM. Transgenerational transmission of cortisol and PTSD risk. Prog Brain Res. 2008;167:121-135. https://doi.org/10.1016/S0079-6123(07)67009-5.
44. Yehuda R, Seckl J. Minireview: Stress-related psychiatric disorders with low cortisol levels: a metabolic hypothesis. Endocrinology. 2011;152(12):4496-4503. https://doi.org/10.1210/en.2011-1218.
45. Seetharaman S, Fleshner M, Park CR, Diamond DM. Influence of daily social stimulation on behavioral and physiological outcomes in an animal model of PTSD. Brain Behav. 2016;6(5):e00458. https://doi.org/10.1002/brb3.458.
46. Zoladz PR, Del Valle CR, Smith IF, et al. Glucocorticoid abnormalities in female rats exposed to a predator-based psychosocial stress model of PTSD. Front Behav Neurosci. 2021;15:675206. https://doi.org/10.3389/fnbeh.2021.675206.
47. Galeeva A, Pelto-Huikko M, Pivina S, et al. Postnatal ontogeny of the glucocorticoid receptor in the hippocampus. Vitam Horm. 2010; 82:367-89. https://doi.org/10.1016/S0083-6729(10)82019-9.
48. Takata F, Nakagawa S, Matsumoto J, et al. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci. 2021; 15:661838. https://doi.org/10.3389/fncel.2021.661838.
49. Esposito P, Gheorghe D, Kandere K, et al. Acute stress increases permeability of the blood-brain-barrier through activation of brain mast cells. Brain Res. 2001;888(1):117127. https://doi.org/10.1016/s0006-8993(00)03026-2.
50. Roszkowski M, Bohacek J. Stress does not increase blood-brain barrier permeability in mice. J Cereb Blood Flow Metab. 2016;36(7):1304-1315. https://doi.org/10.1177/0271678x16647739.
51. van Zuiden M, Heijnen CJ, Maas M, et al. Glucocorticoid sensitivity of leukocytes predicts PTSD, depressive and fatigue symptoms after military deployment: a prospective study. Psychoneuroendocrinology. 2012;37(9):1822-1836. https://doi.org/10.1016/j.psyneuen.2012.03.018.
52. Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci. 2015;16(6):317-331. https://doi.org/10.1038/nrn3945.
53. Wohleb ES, McKim DB, Shea DT, et al. Re-establishment of anxiety in stresssensitized mice is caused by monocyte trafficking from the spleen to the brain. Biol Psychiatry. 2014;75(12):970-981. https://doi.org/10.1016/j.biopsych.2013.11.029.
54. Jin J, Maren S. Fear renewal preferentially activates ventral hippocampal neurons projecting to both amygdala and prefrontal cortex in rats. Sci Rep. 2015;5:8388. https://doi.org/10.1038/srep08388.
55. Agorastos A, Olff M. Sleep, circadian system and traumatic stress. Eur J Psychotraumatol. 2021; 12(1):1956746. https://doi.org/10.1080/20008198.2021.
56. Luik AI, Iyadurai L, Gebhardt I, Holmes EA. Sleep disturbance and intrusive memories after presenting to the emergency department following a traumatic motor vehicle accident: an exploratory analysis. Eur J Psychotraumatol. 2019;10(1):1556550. https://doi.org/10.1080/20008198.2018.1556550.
57. Thormar SB, Gersons BP, Juen B, et al. The impact of disaster work on community volunteers: the role of peri-traumatic distress, level of personal affectedness, sleep quality and resource loss, on post-traumatic stress disorder symptoms and subjective health. J Anxiety Disord. 2014;28(8):971-977. https://doi.org/10.1016/j.janxdis.2014.10.006.
58. DeViva JC, McCarthy E, Southwick SM, et al. The impact of sleep quality on the incidence of PTSD: results from a 7-year, nationally representative, prospective cohort of U.S. military veterans. J Anxiety Disord. 2021;81:102413. https://doi.org/10.1016/j.janxdis.2021.102413.
59. van Liempt S. Sleep disturbances and PTSD: a perpetual circle? Eur J Psychotraumatol. 2012;3:19142. https://doi.org/10.3402/ejpt.v3i0.19142.
60. Agorastos A, Olff M. Sleep, circadian system and traumatic stress. Eur J Psychotraumatol. 2021;12(1):1956746. https://doi.org/10.1080/20008198.2021.1956746.
61. Ticlea AN, Bajor LA, Osser DN. Addressing sleep impairment in treatment guidelines for PTSD. Am J Psychiatry. 2013;170(9):1059. https://doi.org/10.1176/appi.ajp.2013.13050641.
62. Repantis D, Wermuth K, Tsamitros N, et al. REM sleep in acutely traumatized individuals and interventions for the secondary prevention of posttraumatic stress disorder. Eur J Psychotraumatol. 2020;11(1):1740492. https://doi.org/10.1080/20008198.2020.1740492.
63. Agorastos A, Olff M. Traumatic stress and the circadian system: neurobiology, timing and treatment of posttraumatic chronodisruption. Eur J Psychotraumatol. 2020;11(1):1833644. https://doi.org/10.1080/20008198.2020.1833644.
64. Acharya UR, Sree SV, Swapna G, et al. Automated EEG analysis of epilepsy: A review. Knowledge-Based Systems. 2013;45:147–165. https://doi.org/10.1016/j.knosys.2013.02.014.
65. Yang YX, Gao ZK, Wang XM, et al. A recurrence quantification analysis-based channel-frequency convolutional neural network for emotion recognition from EEG. Chaos. 2018 Aug;28(8):085724. https://doi.org/10.1063/1.5023857.
66. Marwan N, Romano MC, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Physics Reports. 2007, pp. 237–329. https://doi.org/10.1016/j.physrep.2006.11.001.
67. Parro VC, Valdo L. Sleep-wake detection using recurrence quantification analysis. Chaos. 2018; 28(8):085706. https://doi.org/10.1063/1.5024692.
68. Marwan N, Kurths J. Line structures in recurrence plots. Phys. Lett. A. 2005, pp. 349– 357. https://doi.org/10.1016/j.physleta.2004.12.056.
69. Marwan N. A historical review of recurrence plots. Eur. Phys. J. Spec. Top. 164, 3–12 (2008). https://doi.org/10.1140/epjst/e2008-00829-1.
70. Емельянова ЕП, Сельский АО. Разметка стадий быстрого и медленного сна с помощью рекуррентного анализа. Известия высших учебных заведений. Прикладная нелинейная динамика 2023;31(5):643-649 / Emelyanova EP, Selskii AO. Marking stages of REM and non-REM sleep using recurrent analysis. Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, vol. 31, iss. 5, pp. 643-649. (In Russ.). https://doi.org/10.18500/0869-6632-003060.
71. Selskii A, Drapkina O, Agaltsov M, et al. Adaptation of recurrence plot method to study a polysomnography: changes in EEG activity in obstructive sleep apnea syndrome. Eur. Phys. J. Spec. Top. 232, 703–714 (2023). https://doi.org/10.1140/epjs/s11734-023-00814-8.
72. Selskii AO, Egorov EN, Ukolov RV, et al. Sleep-disordered breathing: statistical characteristics of joint recurrent indicators in ЕЕG activity. Russian Open Medical Journal 2023; 12: e0401. https://doi.org/10.15275/rusomj.2023.0401.
73. Runnova A, Selskii A, Emelyanova E, et al. Modification of Joint Recurrence Quantification Analysis (JRQA) for assessing individual characteristics from short EEG time series. Chaos. 2021 Sep;31(9):093116. https://doi.org/10.1063/5.0055550.
Review
For citations:
Runnova A.E., Selskii A.O., Emelyanova E.P., Fedonnikov A.S. The potential possibility of nonlinear recurrence methods application for posttraumatic stress disorder investigation. The Eurasian Journal of Life Sciences. 2025;1(1):17-31. https://doi.org/10.47093/3033-5493.2025.1.1.17-31