Preview

The Eurasian Journal of Life Sciences

Advanced search

Predictive design framework for electrospun pectin nanofibers in biomedical applications

https://doi.org/10.47093/3033-5493.2025.1.2.3-24

Abstract

Pectin, a structurally diverse plant-derived polysaccharide, is emerging as a distinctive platform for engineering bioinstructive nanofibrous scaffolds.  Compared to other natural polymers commonly used in electrospinning, such as alginate, hyaluronic acid or collagen, pectin offers a unique combination of mucoadhesiveness, immunomodulatory potential, and fine-tunable molecular architecture governed by the balance of homogalacturonan and rhamnogalacturonan domains. However, its intrinsic polyelectrolyte behavior, low chain entanglement, and high aqueous solubility have historically constrained its use in nanofiber fabrication. Recent advances in chemical modification, solvent engineering, and post-spinning stabilization have enabled the generation of electrospun pectin fibers with controllable morphology, mechanical resilience, and degradation kinetics. This review introduces a predictive structure–property–function framework for the rational design of electrospun pectin nanofibers in biomedical applications. We classify molecular strategies into three groups (covalent, physical, and compositional) and evaluate how each of them affects fiber formation and downstream biological performance, with particular focus on immunological interaction, bioactive loading, and scaffold remodeling. In parallel, we identify translational bottlenecks including material variability, sterilization sensitivity, and regulatory misalignment of crosslinking chemistries. By integrating these factors into a design-informed scaffold logic, this review provides a roadmap for advancing electrospun pectin materials from laboratory prototypes to clinically viable platforms for regenerative medicine, wound healing, and localized therapeutic delivery.

About the Authors

G. K. Tugaeva
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Gilyana K. Tugaeva, Research Assistant, Institute for Regenerative Medicine

8/2, Trubetskaya str., Moscow, 119048



M. M. Bashkatova
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Margarita M. Bashkatova, Research Intern, Institute for Regenerative Medicine

8/2, Trubetskaya str., Moscow, 119048



Yu. M. Efremov
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Yuri M. Efremov, PhD, Associate Professor, Head of the Department of Advanced Biomaterials,  Institute for Regenerative Medicine

8/2, Trubetskaya str., Moscow, 119048



S. L. Kotova
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Svetlana L. Kotova, PhD, Leading Researcher, Laboratory of Macromolecular Design, Institute for Regenerative Medicine

8/2, Trubetskaya str., Moscow, 119048



Peifeng Li
The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University,
China

Peifeng Li, M.D. Dean, Distinguished Professor, Institute of Translational Medicine

Qingdao, 266021



A. I. Shpichka
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Anastasia I. Shpichka, PhD, Associate Professor, Head of the Laboratory Applied Microfluidics,  Institute for Regenerative Medicine

8/2, Trubetskaya str., Moscow, 119048



P. S. Timashev
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Peter S. Timashev, DSc, Professor, Research Director, Biomedical Science & Technology Park

8/2, Trubetskaya str., Moscow, 119048



References

1. Li N, Xue F, Zhang H, et al. Fabrication and Characterization of Pectin Hydrogel Nanofiber Scaffolds for Differentiation of Mesenchymal Stem Cells into Vascular Cells. ACS Biomater Sci Eng. 2019;5(12):6511-6519. https://doi.org/10.1021/acsbiomaterials.9b01178.

2. Chan SY, Chan BQY, Liu Z, et al. Electrospun Pectin-Polyhydroxybutyrate Nanofibers for Retinal Tissue Engineering. ACS Omega. 2017;2(12):8959-8968. https://doi.org/10.1021/acsomega.7b01604.

3. Fiorentini F, Suarato G, Summa M, et al. Plant-Based, Hydrogel-like Microfibers as an Antioxidant Platform for Skin Burn Healing. ACS Appl Bio Mater. 2023;6(8):3103-3116. https://doi.org/10.1021/acsabm.3c00214.

4. Wang JH, Tsai CW, Tsai NY, et al. An injectable, dual crosslinkable hybrid pectin methacrylate (PECMA)/gelatin methacryloyl (GelMA) hydrogel for skin hemostasis applications. Int J Biol Macromols. 2021;185:441-450. https://doi.org/10.1016/j.ijbiomac.2021.06.162.

5. Schulte-Werning LV, Singh B, Johannessen M, Engstad RE, Holsæter AM. Antimicrobial liposomes-in-nanofiber wound dressings prepared by a green and sustainable wire-electrospinning set-up. Int J Pharm. 2024;657:124136. https://doi.org/10.1016/j.ijpharm.2024.124136.

6. Mirhaj M, Varshosaz J, Labbaf S, et al. Mupirocin loaded core-shell pluronic-pectinkeratin nanofibers improve human keratinocytes behavior, angiogenic activity and wound healing. Int J Biol Macromol. 2023;253:126700. https://doi.org/10.1016/j.ijbiomac.2023.126700.

7. Guo H, Ran W, Jin X, et al. Development of pectin/chitosan-based electrospun biomimetic nanofiber membranes loaded with dihydromyricetin inclusion complexes for wound healing application. Int J Biol Macromol. 2024;278:134526. https://doi.org/10.1016/j.ijbiomac.2024.134526.

8. Martău GA, Mihai M, Vodnar DC. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector-Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers (Basel). 2019;11(11):1837. https://doi.org/10.3390/polym11111837.

9. Mohammadinejad R, Maleki H, Larrañeta E, et al. Status and future scope of plant-based green hydrogels in biomedical engineering. Appl Mater Today. 2019;16:213-246. https://doi.org/10.1016/j.apmt.2019.04.010.

10. Zheng J, Yang Q, Shi X, Xie Z, Hu J, Liu Y. Effects of preparation parameters on the properties of the crosslinked pectin nanofiber mats. Carbohydr Polym. 2021;269:118314. https://doi.org/10.1016/j.carbpol.2021.118314.

11. Feng S, Yi J, Ma Y, Bi J. Study on the ice crystals growth under pectin gels with different crosslinking strengths by modulating the degree of amidation in HG domain. Food Chem. 2023;428:136758. https://doi.org/10.1016/j.foodchem.2023.136758.

12. Dong Y, Li H, Zou F, Baniasadi H, Budtova T, Vapaavuori J. Structure-properties correlations in low-methylated pectin hydrogels and aerogels crosslinked by divalent ions. Int J Biol Macromol. 2025;285:137980. https://doi.org/10.1016/j.ijbiomac.2024.137980.

13. McCune D, Guo X, Shi T, et al. Electrospinning pectin-based nanofibers: a parametric and cross-linker study. Appl Nanosci. 2018;8(1-2):33-40. https://doi.org/10.1007/s13204-018-0649-4.

14. Yang M, Zhang M, Zhuang Y, Li Y, Fei P. Amidation pectin with high viscosity and enhanced gelation properties: Preparation, characterization and viscoelastic behaviors. Int J Biol Macromol. 2025;318:145108. https://doi.org/10.1016/j.ijbiomac.2025.145108.

15. Shao F, Xu J, Zhang J, et al. Study on the influencing factors of natural pectin’s flocculation: Their sources, modification, and optimization. Water Environ Res. 2021;93(10):2261-2273. https://doi.org/10.1002/wer.1598.

16. Cui S, Yao B, Gao M, et al. Effects of pectin structure and crosslinking method on the properties of crosslinked pectin nanofibers. Carbohydr Polym. 2017;157:766-774. https://doi.org/10.1016/j.carbpol.2016.10.052.

17. Muñoz-Almagro N, Wilde PJ, Montilla A, Villamiel M. Development of low-calorie gels from sunflower pectin extracted by the assistance of ultrasound. LWT. 2025;222:117609. https://doi.org/10.1016/j.lwt.2025.117609.

18. Wang S, Han H, Zhang X, et al. Efficient extraction of pectin from spaghetti squash (Cucurbita pepo L. subsp. pepo) peel by electron beam irradiation combined with ultrasound: Structural characterization and functional properties. Food Chem. 2025;485:144492. https://doi.org/10.1016/j.foodchem.2025.144492.

19. Würfel H, Heinze T. Acidic dimethyl sulfoxide: A solvent system for the fast dissolution of pectin derivatives suitable for subsequent modification. Carbohydr Polym. 2025;348:122872. https://doi.org/10.1016/j.carbpol.2024.122872.

20. Shi X, Cui S, Song X, et al. Gelatin-crosslinked pectin nanofiber mats allowing cell infiltration. Mater Sci Eng C Mater Biol Appl: C. 2020;112:110941. https://doi.org/10.1016/j.msec.2020.110941.

21. Liu SC, Li R, Tomasula PM, Sousa AMM, Liu L. Electrospun Food-Grade Ultrafine Fibers from Pectin and Pullulan Blends. Food and Nutrition Sciences. 2016;7(7):636-646. https://doi.org/10.4236/fns.2016.77065.

22. Popov S, Paderin N, Chistiakova E, et al. Swelling, Protein Adsorption, and Biocompatibility of Pectin–Chitosan Hydrogels. Gels. 2024;10(7):472. https://doi.org/10.3390/gels10070472.

23. Zirak Hassan Kiadeh S, Ghaee A, Farokhi M, Nourmohammadi J, Bahi A, Ko FK. Electrospun pectin/modified copper-based metal–organic framework (MOF) nanofibers as a drug delivery system. Int J Biol Macromol. 2021;173:351-365. https://doi.org/10.1016/j.ijbiomac.2021.01.058.

24. Pallavicini P, Arciola CR, Bertoglio F, et al. Silver nanoparticles synthesized and coated with pectin: An ideal compromise for anti-bacterial and anti-biofilm action combined with wound-healing properties. J Colloid Interface Sci. 2017;498:271-281. https://doi.org/10.1016/j.jcis.2017.03.062.

25. Alipour R, Khorshidi A, Shojaei AF, Mashayekhi F, Moghaddam MJM. Skin wound healing acceleration by Ag nanoparticles embedded in PVA/PVP/Pectin/Mafenide acetate composite nanofibers. Polym Test. 2019;79:106022. https://doi.org/10.1016/j.polymertesting.2019.106022.

26. Zarandona I, Correia DM, Moreira J, et al. Magnetically responsive chitosan-pectin films incorporating Fe3O4 nanoparticles with enhanced antimicrobial activity. Int J Biol Macromol. 2023;227:1070-1077. https://doi.org/10.1016/j.ijbiomac.2022.11.286.

27. Kolgesiz S, Ozcelik N, Erdemir NE, Unal H. Hybrid Pectin/Polydopamine Hydrogels with Photothermal Properties. ACS Omega. 2025;10(21):21994-22004. https://doi.org/10.1021/acsomega.5c02084.

28. Balakrishnan B, Subramanian S, Mallia MB, et al. Multifunctional Core–Shell Glyconanoparticles for Galectin-3-Targeted, Trigger-Responsive Combination Chemotherapy. Biomacromolecules. 2020;21(7):2645-2660. https://doi.org/10.1021/acs.biomac.0c00358.

29. Mehrali M, Thakur A, Kadumudi FB, et al. Pectin Methacrylate (PEMA) and Gelatin Based Hydrogels for Cell Delivery: Converting Waste Materials into Biomaterials. ACS Appl Mater Interfaces. 2019;11(13):12283-12297. https://doi.org/10.1021/acsami.9b00154.

30. Türkkan S, Atila D, Akdağ A, Tezcaner A. Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering. J Biomed Mater Res B Appl Biomater. 2018;106(7):2625-2635. https://doi.org/10.1002/jbm.b.34079.

31. Zannini D, Monteforte M, Gargiulo L, et al. Citrus Wastes as Source of Pectin and Bioactive Compounds Extracted via One-Pot Microwave Process: An In Situ Path to Modulated Property Control. Polymers (Basel). 2025;17(5):659. https://doi.org/10.3390/polym17050659.

32. Karbuz P, Tugrul N. Microwave and ultrasound assisted extraction of pectin from various fruits peel. J Food Sci Technol. 2021;58(2):641-650. https://doi.org/10.1007/s13197-020-04578-0.

33. Hamed R, Magamseh KH, Al-Shalabi E, et al. Green Hydrogels Prepared from Pectin Extracted from Orange Peels as a Potential Carrier for Dermal Delivery Systems. ACS Omega. 2025;10(17):17182-17200. https://doi.org/10.1021/acsomega.4c08449.

34. Douglas TEL, Dziadek M, Schietse J, et al. Pectin-bioactive glass self-gelling, injectable composites with high antibacterial activity. Carbohydr Polym. 2019;205:427-436. https://doi.org/10.1016/j.carbpol.2018.10.061.

35. Akinalan Balik B, Argin S, Lagaron JM, Torres-Giner S. Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. Appl Sci (Basel). 2019;9(23):5136. https://doi.org/10.3390/app9235136.

36. Rockwell PL, Kiechel MA, Atchison JS, Toth LJ, Schauer CL. Various-sourced pectin and polyethylene oxide electrospun fibers. Carbohydr Polym. 2014;107:110-118. https://doi.org/10.1016/j.carbpol.2014.02.026.

37. Zhang W, Sun J, Li Q, et al. Effects of different extraction solvents on the compositions, primary structures, and anti-inflammatory activity of pectin from sweet potato processing by-products. Carbohydr Polym. 2025;347:122766. https://doi.org/10.1016/j.carbpol.2024.122766.

38. Ahadi F, Khorshidi S, Karkhaneh A. A hydrogel/fiber scaffold based on silk fibroin/oxidized pectin with sustainable release of vancomycin hydrochloride. Eur Polym J. 2019;118:265-274. https://doi.org/10.1016/j.eurpolymj.2019.06.001.

39. Belousov A, Titov S, Shved N, et al. Hydrogels based on modified pectins capable of modulating neural cell behavior as prospective biomaterials in glioblastoma treatment. Int Rev Neurobiol. 2020;151:111-138. https://doi.org/10.1016/bs.irn.2020.03.025.

40. Elsherbini AM, Shalaby TI, Abdelmonsif DA, Rashed SA, Haroun M, Sabra SA. Tadalafil-loaded zein nanoparticles incorporated into pectin/PVA nanofibers as a diabetic wound dressing with enhanced angiogenic and healing properties. J Drug Deliv Sci Technol 2023;89:105019. https://doi.org/10.1016/j.jddst.2023.105019.

41. Hosseini SA, Javad Hoseini S, Askari VR, et al. Pectin-reinforced electrospun nanofibers: Fabrication and characterization of highly biocompatible mats for wound healing applications. J Drug Deliv Sci Technol. 2022;77:103916. https://doi.org/10.1016/j.jddst.2022.103916.

42. Kocaaga B, Kurkcuoglu O, Tatlier M, Batirel S, Guner FS. Low-methoxyl pectin–zeolite hydrogels controlling drug release promote in vitro wound healing. J Appl Polym Sci. 2019;136(24):47640. https://doi.org/10.1002/app.47640.

43. Archana D, Dutta J, Dutta PK. Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol. 2013;57:193-203. https://doi.org/10.1016/j.ijbiomac.2013.03.002.

44. Giusto G, Vercelli C, Comino F, Caramello V, Tursi M, Gandini M. A new, easy-to-make pectin-honey hydrogel enhances wound healing in rats. BMC Complement Altern Med. 2017;17(1):266. https://doi.org/10.1186/s12906-017-1769-1.

45. Gan D, Xing W, Jiang L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat Commun. 2019;10(1):1487. https://doi.org/10.1038/s41467-019-09351-2.

46. Lee J, Hlaing SP, Cao J, et al. In Situ Hydrogel-Forming/Nitric Oxide-Releasing Wound Dressing for Enhanced Antibacterial Activity and Healing in Mice with Infected Wounds. Pharmaceutics. 2019;11(10):496. https://doi.org/10.3390/pharmaceutics11100496.

47. Rezvanian M, Ng SF, Alavi T, Ahmad W. In-vivo evaluation of Alginate-Pectin hydrogel film loaded with Simvastatin for diabetic wound healing in Streptozotocin-induced diabetic rats. Int J Biol Macromol. 2021;171:308-319. https://doi.org/10.1016/j.ijbiomac.2020.12.221.

48. Hasan N, Cao J, Lee J, Kim H, Yoo JW. Development of clindamycin-loaded alginate/pectin/hyaluronic acid composite hydrogel film for the treatment of MRSA-infected wounds. J Pharm Investig. 2021;51(5):597-610. https://doi.org/10.1007/s40005-021-00541-z.

49. Chang L, Chang R, Liu X, et al. Self-healing hydrogel based on polyphosphate conjugated pectin with hemostatic property for wound healing applications. Biomater Adv. 2022;139:212974. https://doi.org/10.1016/j.bioadv.2022.212974.

50. Chetouani A, Elkolli M, Haffar H, et al. Multifunctional hydrogels based on oxidized pectin and gelatin for wound healing improvement. Int J Biol Macromol. 2022;212:248-256. https://doi.org/10.1016/j.ijbiomac.2022.05.082.

51. Bernardi B, Malafatti JOD, Moreira AJ, et al. Antimicrobial membranes based on polycaprolactone: pectin blends reinforced with zeolite faujasite for cloxacillin controlled release. Discover Nano. 2025;20(1):8. https://doi.org/10.1186/s11671-024-04161-y.

52. Wei YS, Feng K, Wu H. Regulation of the colon-targeted release rate of lactoferrin by constructing hydrophobic ethyl cellulose/pectin composite nanofibrous carrier and its effect on anti-colon cancer activity. Int J Biol Macromol. 2024;261:129466. https://doi.org/10.1016/j.ijbiomac.2024.129466.

53. Nawaz A, Irshad S, Walayat N, Khan MR, Iqbal MW, Luo X. Fabrication and Characterization of Apple-Pectin–PVA-Based Nanofibers for Improved Viability of Probiotics. Foods. 2023;12(17):3194. https://doi.org/10.3390/foods12173194.

54. Lin HY, Chen HH, Chang SH, Ni TS. Pectin-chitosan-PVA nanofibrous scaffold made by electrospinning and its potential use as a skin tissue scaffold. J Biomater Sci Polym Ed. 2013;24(4):470-484. https://doi.org/10.1080/09205063.2012.693047.

55. Tavakoli M, Al-Musawi MH, Kalali A, et al. Platelet rich fibrin and simvastatin-loaded pectin-based 3D printed-electrospun bilayer scaffold for skin tissue regeneration. Int J Biol Macromol. 2024;265(Pt 1):130954. https://doi.org/10.1016/j.ijbiomac.2024.130954.

56. Dai Z, Ronholm J, Tian Y, Sethi B, Cao X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J Tissue Eng. 2016;7:2041731416648810. https://doi.org/10.1177/2041731416648810.

57. Yoganarasimha S, Best A, Madurantakam PA. Peracetic Acid Sterilization Induces Divergent Biological Response in Polymeric Tissue Engineering Scaffolds. Appl Sci (Basel). 2019;9(18):3682. https://doi.org/10.3390/app9183682.


Review

For citations:


Tugaeva G.K., Bashkatova M.M., Efremov Yu.M., Kotova S.L., Li P., Shpichka A.I., Timashev P.S. Predictive design framework for electrospun pectin nanofibers in biomedical applications. The Eurasian Journal of Life Sciences. 2025;1(2):3-24. https://doi.org/10.47093/3033-5493.2025.1.2.3-24

Views: 6

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 3033-5493 (Print)
ISSN 3033-6031 (Online)