Preview

Евразийский журнал наук о жизни

Расширенный поиск

Treatment of cardiac contusion: experimental basis for pathogenetic therapy and emerging approaches in cardioprotection

https://doi.org/10.47093/3033-5493.2025.1.1.53-72

Аннотация

Myocardial contusion is a serious consequence of blunt thoracic trauma, most commonly resulting from traffic accidents, falls, sports injuries, and combatrelated events. It is associated with impaired myocardial contractility, fibrosis, and systemic inflammation, and carries a high risk of complications, with mortality rates reaching up to 10%. Despite advances in understanding the pathogenesis, the development of effective therapeutic strategies remains a key priority in experimental cardiology. 

A promising direction involves the development of targeted approaches that address both myocardial injury and the optimization of adaptive responses. The first aspect focuses on counteracting bioenergetic hypoxia, restoring energy and ionic homeostasis, suppressing secondary damage in the context of inflammation, and regulating apoptosis and autophagy. The second aspect targets the modulation of stress-activating and stress-limiting systems, including tissue-level adaptation mechanisms.

Particular attention has been given to cardioprotective agents, which have demonstrated efficacy in ischemic heart disease, myocardial infarction, and ischemia–reperfusion injury. However, their impact on post-traumatic myocardial remodeling remains insufficiently explored. Phytopreparations from the Chinese Pharmacopoeia, characterized by multitarget activity on key pathological processes — such as bioenergetic deficiency, oxidative stress, and dysregulation of cellular homeostasis — may offer a viable alternative. Integrated strategies combining anti-inflammatory effects, metabolic support, and control of fibrogenesis may enhance therapeutic outcomes.

Further research is necessary to assess the synergistic interactions of individual components, dose-dependent responses, and the long-term impact on myocardial structure and function. Multimodal approaches may improve therapeutic efficacy and help overcome the limitations of monotherapy, opening new avenues for the management of post-traumatic cardiac complications.

Об авторах

A. Zolotov
Omsk State Medical University
Россия


J. Li
Harbin Medical University
Китай


N. Wang
Harbin Medical University
Китай


A. Priymak
Omsk State Medical University
Россия


O. Korpacheva
Omsk State Medical University
Россия


E. Klyuchnikova
Omsk State Medical University
Россия


A. Toropov
Omsk State Medical University
Россия


Список литературы

1. Brewer B, Zarzaur BL. Cardiac Contusions. Current Trauma Reports. 2015;1:232– 236. https://doi.org/10.1007/s40719-015-0031-x.

2. Ždrale S, Vuković M. Cardiac War Wounds. Acta Facultatis Medicae Naissensis. 2016;33:135–140. https://doi.org/10.1515/afmnai-2016-0015.

3. Huber S, Biberthaler P, Delhey P, et al. Predictors of poor outcomes after significant chest trauma in multiply injured patients: a retrospective analysis from the German Trauma Registry (Trauma Register DGU®). Scand J Trauma Resusc Emerg Med. 2014;22:52. https://doi.org/10.1186/s13049-014-0052-4.

4. Scagliola R, Seitun S, Balbi M. Cardiac contusions in the acute care setting: Historical background, evaluation and management. Am J Emerg Med. 2022;61:152-157. https://doi.org/10.1016/j.ajem.2022.09.005.

5. Kyriazidis IP, Jakob DA, Vargas JAH, et al. Accuracy of diagnostic tests in cardiac injury after blunt chest trauma: a systematic review and meta-analysis. World J Emerg Surg. 2023;18(1):36. https://doi.org/10.1186/s13017-023-00504-9.

6. Baldwin D, Chow KL, Mashbari H, Omi E, Lee JK. Case reports of atrial and pericardial rupture from blunt cardiac trauma. J CardiothoracSurg. 2018;13(1):71. https://doi.org/10.1186/s13019-018-0753-2.

7. Денисов АВ, Кузьмин АЯ, Гаврилин СВ и соавт. Ушиб сердца при закрытых травмах груди: этиология, диагностика, тяжесть повреждения сердца (обзор литературы). Военно-медицинский журнал. https://doi.org/10.17816/RMMJ73014.

8. Бордаков ПВ, Остапенко ЕН, Бордаков ВН, Гукайло СЕ, Игнатович ДВ. Закрытые повреждения сердца. Диагностика и лечение на догоспитальном этапе. Военная медицина. https://doi.org/10.51922/2074-5044.2023.1.2.

9. McMullan MH, Maples MD, Kilgore TL Jr, Hindman SH. Surgical experience with left ventricular free wall rupture. Ann Thorac Surg. 2001;71(6):1894-1899. https://doi.org/10.1016/s0003-4975(01)02625-x.

10. Kang W, Robitaille MC, Merrill M, Teferra K, Kim C, Raphael MP. Mechanisms of cell damage due to mechanical impact: an in vitro investigation. Sci Rep. 2020;10(1):12009. Published 2020 Jul 20. https://doi.org/10.1038/s41598-020-68655-2.

11. Корпачева ОВ, Долгих ВТ. Изменение основного энергетического субстрата как способ защиты миокарда от ишемического повреждения при экспериментальной механической травме сердца. Патологическая физиология и экспериментальная терапия.

12. Li X, Wang Z, Yang Y, Meng F, He Y, Yang P. Myocardial infarction following a blunt chest trauma: A case report. Medicine (Baltimore). 2019;98(4):e14103. https://doi.org/10.1097/MD.0000000000014103.

13. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21(5):268-283. https://doi.org/10.1038/s41580-020-0227-y.

14. Приходько ВА, Селизарова ВА, Оковитый СВ. Молекулярные механизмы развития гипоксии и адаптации к ней. Часть I. Архив патологии. https://doi.org/10.17116/patol20218302152.

15. Senoner T, Dichtl W. Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target?. Nutrients. 2019;11(9):2090. https://doi.org/10.3390/nu11092090.

16. Приймак АБ, Корпачева ОВ, Золотов АН, Ключникова ЕИ. Роль агониста периферических опиатных рецепторов в патогенезе ушиба сердца у крыс с различной стрессустойчивостью. Фундаментальная и клиническая медицина. https://doi.org/10.23946/2500-0764-2022-7-2-8-19.

17. Smith KA, Waypa GB, Schumacker PT. Redox signaling during hypoxia in mammalian cells. RedoxBiol. 2017;13:228-234. https://doi.org/10.1016/j.redox.2017.05.020.

18. Корпачева ОВ, Долгих ВТ. Течение посттравматического периода при ушибе сердца (экспериментальное исследование). Общая реаниматология.

19. Корпачева ОВ. Вегетативная регуляция сердечной деятельности в раннем посттравматическом периоде экспериментального ушиба сердца. Вестник Санкт-Петербургской государственной медицинской академии им. И.И. Мечникова.

20. Корпачева ОВ, Долгих ВТ. Электрокардиографические нарушения при ушибе сердца (экспериментальное исследование). Общая реаниматология.

21. de Lucia C, Piedepalumbo M, Paolisso G, Koch WJ. Sympathetic nervous system in age-related cardiovascular dysfunction: Pathophysiology and therapeutic perspective. Int J Biochem Cell Biol. 2019;108:29-33. https://doi.org/10.1016/j.biocel.2019.01.004.

22. Atrooz F, Alkadhi KA, Salim S. Understanding stress: Insights from rodent models. Curr Res Neurobiol. 2021;2:100013. https://doi.org/10.1016/j.crneur.2021.100013.

23. Бяловский ЮЮ, Булатецкий СВ, Глушкова ЕП. Системная организация неспецифических механизмов адаптации в восстановительной медицине.

24. Bangsumruaj J, Kijtawornrat A, Kalandakanond-Thongsong S. Effects of chronic mild stress on GABAergic system in the paraventricular nucleus of hypothalamus associated with cardiac autonomic activity. Behav Brain Res. 2022;432:113985. https://doi.org/10.1016/j.bbr.2022.113985.

25. Jie F, Yin G, Yang W, et al. Stress in Regulation of GABA Amygdala System and Relevance to Neuropsychiatric Diseases. Front Neurosci. 2018;12:562. https://doi.org/10.3389/fnins.2018.00562.

26. Wang S. Historical Review: Opiate Addiction and Opioid Receptors. Cell Transplant. 2019;28(3):233-238. https://doi.org/10.1177/0963689718811060.

27. Stein C. Opioid Receptors. Annu Rev Med. 2016;67:433-51. https://doi.org/10.1146/annurev-med-062613-093100.

28. Caruso A, Gaetano A, Scaccianoce S. Corticotropin-Releasing Hormone: Biology and Therapeutic Opportunities. Biology (Basel). 2022;11(12):1785. https://doi.org/10.3390/biology11121785.

29. Jaschke N, Pählig S, Pan YX, Hofbauer LC, Göbel A, Rachner TD. From Pharmacology to Physiology: Endocrine Functions of μ-Opioid Receptor Networks. Trends Endocrinol Metab. 2021;32(5):306-319. https://doi.org/10.1016/j.tem.2021.02.004.

30. Parker KE, Sugiarto E, Taylor AMW, Pradhan AA, Al-Hasani R. Pain, Motivation, Migraine, and the Microbiome: New Frontiers for Opioid Systems and Disease. Mol Pharmacol. 2020;98(4):433-444. https://doi.org/10.1124/mol.120.119438.

31. Patrono C. Cardiovascular effects of cyclooxygenase-2 inhibitors: a mechanistic and clinical perspective. Br J Clin Pharmacol. 2016;82(4):957-964. https://doi.org/10.1111/bcp.13048.

32. Gądek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacol Rep. 2013;65(6):1655-62. https://doi.org/10.1016/s1734-1140(13)71527-5.

33. Золотов АН, Ключникова ЕИ, Корпачева ОВ, Приймак АБ. Сократительная функция миокарда в посттравматическом периоде ушиба сердца у крыс с различной стрессоустойчивостью: доклиническое экспериментальное рандомизированное исследование. Кубанский научный медицинский вестник. https://doi.org/10.25207/1608-6228-2024-31-5-41-72.

34. Ключникова ЕИ, Корпачева ОВ, Мозговой СИ, Золотов АН, Кононов АВ. Экспрессия Beclin-1 и Caspase 3 в посттравматическом периоде экспериментального ушиба сердца у крыс с различной стрес соустойчивостью. Фундаментальная и клиническая медицина. https://doi.org/10.23946/2500-0764-2024-9-2-8-19.

35. Ключникова ЕИ, Мозговой СИ, Золотов АН, Корпачева ОВ, Кононов АВ. Экспрессия десмина в миокарде крыс с высокой и низкой стрессоустойчивостью в посттравматическом периоде ушиба сердца. Современные проблемы науки и образования. https://doi.org/10.17513/spno.33940.

36. Li J, Li Y, Liu Y et al. Fibroblast Growth Factor 21 Ameliorates NaV1.5 and Kir2.1 Channel Dysregulation in Human AC16 Cardiomyocytes. Front Pharmacol. 2021;12:715466. https://doi.org/10.3389/fphar.2021.715466.

37. Li J, Gong L, Zhang R et al. Fibroblast growth factor 21 inhibited inflammation and fibrosis after myocardial infarction via EGR1. Eur J Pharmacol. 2021;910:174470. https://doi.org/10.1016/j.ejphar.2021.174470.

38. Li J, Xu C, Liu Y et al. Fibroblast growth factor 21 inhibited ischemic arrhythmias via targeting miR-143/EGR1 axis. Basic Res Cardiol. 2020;115(2):9. https://doi.org/10.1007/s00395-019-0768-4.

39. Корпачева ОВ, Долгих ВТ. Сократимость изолированных сердец крыс в посттравматическом периоде ушиба сердца на фоне предварительного введения триметазидина. Вестник Уральской медицинской академической науки.

40. Мазина НК, Мазин ВП, Коваленко АЛ. Клинико-экономическая эффективность применения реамберина при неотложных состояниях по данным метаанализа. Фармакоэкономика: теория и практика.

41. Ойнотникова ОШ, Корниенко ЕА. Влияние инфузии Реамберина на динамику окислительного стресса и реологические показатели крови при остром инфаркте миокарда у пациентов с сахарным диабетом 2-го типа после операции чрескожной транслюминальной ангиопластики. FOCUS Эндокринология. https://doi.org/10.47407/ef2021.2.2.0022.

42. Горбунова АВ, Джабрраилова БА, Корпачева ОВ. Применение метаболических цитопротекторов триметазидина и глутамина при экспериментальном ушибе сердца. Международный научно-исследовательский журнал. https://doi.org/10.18454/IRJ.2016.44.051.

43. Аббасов АК, Аббасова ДБ, Арипходжаева ФЗ. Эффективность комплексной терапии Милдроната у больных с острым коронарным синдромом. Молодой ученый.

44. Сидоренко ГИ, Гелис ЛГ, Медведева ЕА и соавт. Фармакологическая защита миокарда реамберином при коронарном шунтировании у пациентов с постинфарктной стенокардией. Терапевтический архив.

45. Woxholt S, Ueland T, Aukrust P et al. Effect of tocilizumab on endothelial and platelet-derived CXC-chemokines and their association with inflammation and myocardial injury in STEMI patients undergoing primary PCI. Int J Cardiol. 2025;418:132613. https://doi.org/10.1016/j.ijcard.2024.132613.

46. Kindberg KM, Broch K, Andersen GØ et al. Neutrophil Extracellular Traps in ST-Segment Elevation Myocardial Infarction: Reduced by Tocilizumab and Associated With Infarct Size. JACC Adv. 2024;3(9):101193. https://doi.org/10.1016/j.jacadv.2024.101193.

47. Broch K, Anstensrud AK, Woxholt S et al. Randomized Trial of Interleukin-6 Receptor Inhibition in Patients With Acute ST-Segment Elevation Myocardial Infarction. J Am Coll Cardiol. 2021;77(15):1845-1855. https://doi.org/10.1016/j.jacc.2021.02.049

48. Helseth R, Kleveland O, Ueland T et al. Tocilizumab increases citrullinated histone 3 in non-ST segment elevation myocardial infarction. Open Heart. 2021;8(1):e001492. https://doi.org/10.1136/openhrt-2020-001492.

49. Wang S, Zhang J, Wang Y, Jiang X, Guo M, Yang Z. NLRP3 inflammasome as a novel therapeutic target for heart failure. Anatol J Cardiol. 2022;26(1):15-22. https://doi.org/10.5152/AnatolJCardiol.2021.580.

50. Pavillard LE, Cañadas-Lozano D, Alcocer-Gómez E, et al. NLRP3-inflammasome inhibition prevents high fat and high sugar diets-induced heart damage through autophagy induction. Oncotarget. 2017;8(59):99740-99756. https://doi.org/10.18632/oncotarget.20763.

51. Masson W, Lobo M, Barbagelata L, Lavalle-Cobo A, Molinero G. Prognostic value of statin therapy in patients with myocardial infarction with nonobstructive coronary arteries (MINOCA): a meta-analysis. Acta Cardiol. 2022;77(6):480-487. https://doi.org/10.1080/00015385.2021.1955480.

52. Stähli BE, Klingenberg R, Heg D et al. Mammalian Target of Rapamycin Inhibition in Patients With ST-Segment Elevation Myocardial Infarction. J Am Coll Cardiol. 2022;80(19):1802-1814. https://doi.org/10.1016/j.jacc.2022.08.747.

53. Aisa Z, Liao GC, Shen XL, Chen J, Jiang SB. Effect of autophagy on myocardial infarction and its mechanism. Eur Rev Med Pharmacol Sci. 2017;21(16):3705-3713.

54. Li ZH, Wang YL, Wang HJ, Wu JH, Tan YZ. Rapamycin-Preactivated Autophagy Enhances Survival and Differentiation of Mesenchymal Stem Cells After Transplantation into Infarcted Myocardium. Stem Cell Rev Rep. 2020;16(2):344-356. https://doi.org/10.1007/s12015-020-09952-1.

55. Kwon SP, Hwang BH, Park EH et al. Nanoparticle-Mediated Blocking of Excessive Inflammation for Prevention of Heart Failure Following Myocardial Infarction. Small. 2021;17(32):e2101207. https://doi.org/10.1002/smll.202101207.

56. Elma B, Mammadov R, Süleyman H, et al. The effect of rutin on experimentally induced acute heart contusion in rats: Biochemical and histopathological evaluation. Ulus Travma Acil Cerrahi Derg. 2022;28(8):1073-1081. https://doi.org/10.14744/tjtes.2021.97760.

57. Biffl WL, Fawley JA, Mohan RC. Diagnosis and management of blunt cardiac injury: What you need to know. J Trauma Acute Care Surg. 2024;96(5):685-693. https://doi.org/10.1097/TA.0000000000004216.

58. Oliver E, Mayor F Jr, D’Ocon P. Beta-blockers: Historical Perspective and Mechanisms of Action. Rev Esp Cardiol (Engl Ed). 2019;72(10):853-862. https://doi.org/10.1016/j.rec.2019.04.006.

59. Wang SY, Shu Q, Chen PP, et al. [Effects of electroacupuncture pretreatment on GABAA receptor of fastigial nucleus and sympathetic nerve activity in rats with myocardial ischemia reperfusion injury]. Zhongguo Zhen Jiu. 2023;43(6):669-678 (In Chin.). https://doi.org/10.13703/j.0255-2930.20221203-k0003.

60. Антонова ВВ, Евсеев АК, Горончаровская ИВ, Рыжков АЮ, Гребенчиков ОА, Шабанов АК. Влияние тирозил-D-аланил-глицил-фенилаланил-лейциларгинина диацетата (Даларгин) на окислительный стресс у пациентов с тяжелой сочетанной травмой: проспективное клиническое исследование. Вестник интенсивной терапии имени А.И. Салтанова. https://doi.org/10.21320/1818-474X-2023-4-185-196.

61. Headrick JP, Pepe S, Peart JN. Non-analgesic effects of opioids: cardiovascular effects of opioids and their receptor systems. Curr Pharm Des. 2012;18(37):60906100. https://doi.org/10.2174/138161212803582360.

62. Olianas MC, Dedoni S, Onali P. δ-Opioid receptors stimulate GLUT1-mediated glucose uptake through Src- and IGF-1 receptor-dependent activation of PI3-kinase signalling in CHO cells. Br J Pharmacol. 2011;163(3):624-637. https://doi.org/10.1111/j.1476-5381.2011.01234.x.

63. Lackner I, Weber B, Knecht D, et al. Cardiac Glucose and Fatty Acid Transport After Experimental Mono- and Polytrauma. Shock. 2020;53(5):620-629. https://doi.org/10.1097/SHK.0000000000001400.

64. Булгаков СА. Агонисты опиатных рецепторов в гастроэнтерологической практике. Доказательная гастроэнтерология. https://doi.org/10.17116/dokgastro201541-214-18.

65. Переведенцева СЕ, Савинова НВ, Трофимова СР. Влияние даларгина на показатели обмена коллагена в тканях крыс, подвергавшихся многократным стрессорным воздействиям. Здоровье, демография, экология финно-угорских народов.

66. Ляшев АЮ, Маль ГС. Влияние даларгина на фагоцитарную активность нейтрофилов при экспериментальном язвенном колите у мышей. Вестник Смоленской государственной медицинской академии.

67. Chen Y, Li Y, Huang L et al. Antioxidative Stress: Inhibiting Reactive Oxygen Species Production as a Cause of Radioresistance and Chemoresistance. Oxid Med Cell Longev. 2021;2021:6620306. https://doi.org/10.1155/2021/6620306.

68. Hu T, Zou HX, Le SY et al. Tanshinone IIA confers protection against myocardial ischemia/reperfusion injury by inhibiting ferroptosis and apoptosis via VDAC1. Int J Mol Med. 2023;52(5):109. https://doi.org/10.3892/ijmm.2023.5312.

69. Cheng TF, Zhao J, Wu QL et al. Compound Dan Zhi tablet attenuates experimental ischemic stroke via inhibiting platelet activation and thrombus formation. Phytomedicine. 2020;79:153330. https://doi.org/10.1016/j.phymed.2020.153330.

70. Ding B, Lin C, Liu Q et al. Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro. J Neuroinflammation. 2020;17(1):302. https://doi.org/10.1186/s12974-020-01981-4.

71. Shan X, Xiao Y, Hong B et al. Phytochemical profile and protective effects on myocardial ischaemia-reperfusion injury of sweated and non-sweated Salvia miltiorrhiza. Bge alcoholic extracts. J Pharm Pharmacol. 2022;74(9):1230-1240. https://doi.org/10.1093/jpp/rgac012.

72. Chen X, Tian C, Zhang Z et al. Astragaloside IV Inhibits NLRP3 Inflammasome- Mediated Pyroptosis via Activation of Nrf-2/HO-1 Signaling Pathway and Protects against Doxorubicin-Induced Cardiac Dysfunction. Front Biosci (Landmark Ed). 2023;28(3):45. https://doi.org/10.31083/j.fbl2803045.

73. Han X, Yu T, Chen X, Du Z, Yu M, Xiong J. Effect of Astragalus membranaceus on left ventricular remodeling in HFrEF: a systematic review and meta-analysis. Front Pharmacol. 2024;15:1345797. https://doi.org/10.3389/fphar.2024.1345797.

74. Yang C, Zhu Q, Chen Y et al. Review of the Protective Mechanism of Curcumin on Cardiovascular Disease. Drug Des Devel Ther. 2024;18:165-192. https://doi.org/10.2147/DDDT.S445555.

75. Wang S, Yang X. Eleutheroside E decreases oxidative stress and NF-κB activation and reprograms the metabolic response against hypoxia-reoxygenation injury in H9c2 cells. Int Immunopharmacol. 2020;84:106513. https://doi.org/10.1016/j.intimp.2020.106513.

76. Stansbury J, Saunders P, Winston D. Supporting Adrenal Function with Adaptogenic Herbs. Journal of Restorative Medicine. 2012;1(1):76-82.

77. Chen J, Huang Q, Li J et al. Panax ginseng against myocardial ischemia/reperfusion injury: A review of preclinical evidence and potential mechanisms. J Ethnopharmacol. 2023;300:115715. https://doi.org/10.1016/j.jep.2022.115715.

78. Huang Q, Yao Y, Wang Y et al. Ginsenoside Rb2 inhibits p300-mediated SF3A2 acetylation at lysine 10 to promote Fscn1 alternative splicing against myocardial ischemic/reperfusion injury. J Adv Res. 2024;65:365-379. https://doi.org/10.1016/j.jare.2023.12.012.

79. Sarkar C, Quispe C, Jamaddar S et al. Therapeutic promises of ginkgolide A: A literature-based review. Biomed Pharmacother. 2020;132:110908. https://doi.org/10.1016/j.biopha.2020.110908.

80. Walesiuk A, Trofimiuk E, Braszko JJ. Ginkgo biloba normalizes stress- and corticosterone-induced impairment of recall in rats. Pharmacol Res. 2006;53(2):123-128. https://doi.org/10.1016/j.phrs.2005.09.007.

81. Peng Y, Lin Y, Yu NW, Liao XL, Shi L. [The Clinical Efficacy and Possible Mechanism of Combination Treatment of Cerebral Ischemic Stroke with Ginkgo Biloba Extract and Low-Frequency Repetitive Transcranial Magnetic Stimulation]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2021;52(5):883-889 (In Chin.). https://doi.org/10.12182/20210960202.

82. Zhao X, Xiang Y, Cai C, Zhou A, Zhu N, Zeng C. Schisandrin B protects against myocardial ischemia/reperfusion injury via the PI3K/Akt pathway in rats. Mol Med Rep. 2018;17(1):556-561. https://doi.org/10.3892/mmr.2017.7926.

83. Giridharan VV, Thandavarayan RA, Arumugam S et al. Schisandrin B Ameliorates ICV-Infused Amyloid β Induced Oxidative Stress and Neuronal Dysfunction through Inhibiting RAGE/NF-κB/MAPK and Up-Regulating HSP/Beclin Expression. PLoS One. 2015;10(11):e0142483. https://doi.org/10.1371/journal.pone.0142483.

84. Yang J, Zhou D, Hu J, Yang DH, Cai Y, Lu Q. Schisandrin B attenuates bleomycin-induced pulmonary fibrosis in mice through AKT-mTOR pathway. Sarcoidosis Vasc Diffuse Lung Dis. 2024;41(3):e2024034. https://doi.org/10.36141/svdld.v41i3.12728.

85. Zhao A, Liu N, Jiang G et al. Combination of panax ginseng and ginkgo biloba extracts attenuate cerebral ischemia injury with modulation of NLRP3 inflammasome and CAMK4/CREB pathway. Front Pharmacol. 2022;13:980449. https://doi.org/10.3389/fphar.2022.980449.

86. Cong W, Sheng L, Li Y, Li P, Lin C, Liu J. [Protective effects of ginseng-ginko extracts combination on rat primary cultured neurons induced by Abeta(1-40)]. Zhongguo Zhong Yao Za Zhi. 2011;36(7):908-11 (In Chin.).


Рецензия

Для цитирования:


 ,  ,  ,  ,  ,  ,   . Евразийский журнал наук о жизни. 2025;1(1):53-72. https://doi.org/10.47093/3033-5493.2025.1.1.53-72

For citation:


Zolotov A.N., Li J., Wang N., Priymak A.B., Korpacheva O.V., Klyuchnikova E.I., Toropov A.P. Treatment of cardiac contusion: experimental basis for pathogenetic therapy and emerging approaches in cardioprotection. The Eurasian Journal of Life Sciences. 2025;1(1):53-72. https://doi.org/10.47093/3033-5493.2025.1.1.53-72

Просмотров: 56


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 3033-5493 (Print)