Preview

欧亚生命科学杂志

高级搜索

光敏剂开发策略

https://doi.org/10.47093/3033-5493.2025.1.1.32-42

摘要

传统光敏剂在有效性、选择性及潜在副作用方面存在固有局限,这阻碍了其在肿瘤临床治疗中的应用。本研究深入探讨了新型光敏剂的创新开发策略,旨在提升其临床性能。通过对多种化学结构分子(包括新型纳米材料和共轭体系)的系统分析,我们发现这些化合物不仅具有优异的光稳定性,更能选择性靶向肿瘤组织——这对提升治疗效果至关重要。

除阐述新一代光敏剂的优化特性外,本研究详细解析了其作用机制:如何在诱导癌细胞细胞毒效应的同时,最大限度减少对周边健康组织的损伤。我们通过急性与长期毒性评估,重点探讨了降低副作用的调控策略。研究强调,持续推动光敏剂的开发与优化具有重要价值,其多学科应用特性需整合化学、药理学与肿瘤学的研究成果,从而全面提升光动力疗法的整体效能。

更值得关注的是,这些光敏剂的应用潜力可突破传统治疗场景。我们探索了其与化疗、放疗等其他治疗模式的协同整合可能性,这种多模态治疗策略有望产生协同效应,显著改善癌症患者的临床预后。

关于作者

O. V. Shevchenko
太平洋国立医科大学
俄罗斯联邦

Olga V. Shevchenko, 生物学副博士,多学科实验中心研究员,科研处处长

ave Ostryakova, 2, Vladivostok, 690002



V. B. Shumatov
太平洋国立医科大学
俄罗斯联邦

Valentin B. Shumatov, 医学博士,教授,俄罗斯科学院通讯院士,校长

ave Ostryakova, 2, Vladivostok, 690002



L. Yang
哈尔滨医科大学
中国

Lei Yang, 主任医师,教授,第一附属医院数字骨科与生物技术诊疗中心主任

23 Post Street, Nangang District, Heilongjiang Province, 150007



参考

1. Algorri JF, Ochoa M, Roldan-Varona P, Rodriguez-Cobo L, Lopez-Higuera JM. Photodynamic therapy: A compendium of latest reviews. Cancers. 2021;13(17):4447. https://doi.org/10.3390/cancers13174447.

2. Maharjan PS, Bhattarai HK. Singlet oxygen, photodynamic therapy, and mechanisms of cancer cell death. J Oncol. 2022;2022(1):7211485. https://doi.org/10.1155/2022/7211485.

3. Medzhitov R. The spectrum of inflammatory responses. Science. 2021;374(6571): 1070-1075. https://doi.org/10.1126/science.abi5200.

4. Zhao X, Liu J, Fan J, Chao H, Peng X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chem Soc Rev. 2021;50(6):4185-4219. https://doi.org/10.1039/D0CS00173B.

5. Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem Rev. 2021;121(21):1345413619. https://doi.org/10.1021/acs.chemrev.1c00381.

6. Aires-Fernandes M, Botelho Costa R, Rochetti do Amaral S, Mussagy CU, SantosEbinuma VC, Primo FL. Development of biotechnological photosensitizers for photodynamic therapy: cancer research and treatment-from benchtop to clinical practice. Molecules. 2022;27(20):6848. https://doi.org/10.3390/molecules27206848.

7. Auler H, Banzer G. Untersuchungen über die Rolle der Porphyrine bei Geschwulstkranken Menschen und Tieren. Z Krebsforsch. 1942;53:65-68 (in German).

8. Aebisher D, Czech S, Dynarowicz K, Misiołek M, Komosińska-Vassev K, KawczykKrupka A, Bartusik-Aebisher D. Photodynamic therapy: past, current, and future. Int J Mol Sci. 2024;25(20):11325. https://doi.org/10.3390/ijms252011325.

9. Aebisher D, Szpara J, Bartusik-Aebisher D. Advances in medicine: photodynamic therapy. Int J Mol Sci. 2024;25(15):8258. https://doi.org/10.3390/ijms25158258.

10. Maziere JC, Pineau A, Pichon M, Doudin A, Dussossoy AL, Brouillaud B. Cellular uptake and photosensitizing properties of anticancer porphyrins in cell membranes and low and high density lipoproteins. J Photochem Photobiol B: Biol. 1990;6(12):61-68. https://doi.org/10.1016/1011-1344(90)85074-7.

11. Plekhova N, Shevchenko O, Korshunova O, Stepanyugina A, Tananaev I, Apanasevich V. Development of novel tetrapyrrole structure photosensitizers for cancer photodynamic therapy. Bioengineering. 2022;9(2):82. https://doi.org/10.3390/bioengineering9020082.

12. McCullough JL, Barlow W, Fuchs E, Gallo RL. Development of a topical hematoporphyrin derivative formulation: characterization of photosensitizing effects in vivo. J Investig Dermatol. 1983;81(6):528-532.

13. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018 Oct;106:10981107. https://doi.org/10.1016/j.biopha.2018.07.049.

14. Ailioaie LM, Ailioaie C, Litscher G. Latest innovations and nanotechnologies with curcumin as a nature-inspired photosensitizer applied in the photodynamic therapy of cancer. Pharmaceutics. 2021;13(10):1562. https://doi.org/10.3390/pharmaceutics13101562.

15. Sokolov VV, Chissov VI, Filonenko EV, Kozlov DN, Smirnov VV. Photodynamic therapy of cancer with the photosensitizer PHOTOGEM. Proc SPIE Int Soc Opt Eng. 1995;2325:367-374. https://doi.org/10.1117/12.199169.

16. Tavakkoli Yaraki M, Liu B, Tan YN. Emerging strategies in enhancing singlet oxygen generation of nano-photosensitizers toward advanced phototherapy. Nano-Micro Lett. 2022;14(1):123. https://doi.org/10.1007/s40820-022-00856-y.

17. Mirza Z, Karim S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin Cancer Biol. 2021;69:226-237. https://doi.org/10.1016/j.semcancer.2019.10.020.

18. Seyed MA, Mahmoud E. Photosensitizing herbs as potential therapeutics: a prospective insight into their mechanisms for the development of novel drug leads in war with cancer and other human diseases. Open Access Maced J Med Sci. 2024;12(2):234-246. https://doi.org/10.3889/oamjms.2024.11883.

19. Lin Y, Xie R, Yu T. Photodynamic therapy for atherosclerosis: past, present, and future. Pharmaceutics. 2024;16(6):729. https://doi.org/10.3390/pharmaceutics16060729.

20. Kumari P, Rompicharla SVK, Bhatt H, Ghosh B, Biswas S. Development of chlorin e6-conjugated poly(ethylene glycol)-poly(d,l-lactide) nanoparticles for photodynamic therapy. Nanomedicine (Lond). 2019 Apr;14(7):819-834. https://doi.org/10.2217/nnm-2018-0255.

21. Wu C, Zhang Y, Wei X, Li N, Huang H, Xie Z, et al. Tumor homing-penetrating and nanoenzyme-augmented 2D phototheranostics against hypoxic solid tumors. Acta Biomater. 2022;150:391-401. https://doi.org/10.1016/j.actbio.2022.07.044.

22. Lu H, Li W, Qiu P, Zhang X, Qin J, Cai Y, Lu X. MnO2 doped graphene nanosheets for carotid body tumor combination therapy. Nanoscale Adv. 2022;4(20):4304-4313. https://doi.org/10.1039/D2NA00086E.

23. Wang Y, Cai D, Wu H, Fu Y, Cao Y, Zhang Y, et al. Functionalized Cu3BiS3 nanoparticles for dual-modal imaging and targeted photothermal/photodynamic therapy. Nanoscale. 2018;10(9):4452-4462. https://doi.org/10.1039/C7NR07458A.

24. Bourdon O, et al. Biodistribution of meta-tetra (hydroxyphenyl) chlorin incorporated into surface-modified nanocapsules in tumor-bearing mice. Photochem Photobiol Sci. 2002;1:709-714. https://doi.org/10.1039/b205282b.

25. Pathak P, Zarandi MA, Zhou X, Jayawickramarajah J. Synthesis and applications of porphyrin-biomacromolecule conjugates. Front Chem. 2021;9:764137. https://doi.org/10.3389/fchem.2021.764137.

26. Tran P, Weldemichael T, Liu Z, Li HY. Delivery of oligonucleotides: efficiency with lipid conjugation and clinical outcome. Pharmaceutics. 2022;14(2):342. https://doi.org/10.3390/pharmaceutics14020342.

27. Stulz E. Bio-inspired functional DNA architectures. In: Molecular Architectonics and Nanoarchitectonics. 2022:259-280. https://doi.org/10.1007/978-981-16-4189-3.

28. Arseneault M, Wafer C, Morin JF. Recent advances in click chemistry applied to dendrimer synthesis. Molecules. 2015;20(5):9263-9294. https://doi.org/10.3390/molecules20059263.

29. Umezawa N, Matsumoto N, Iwama S, Kato N, Higuchi T. Facile synthesis of peptide-porphyrin conjugates: towards artificial catalase. Bioorg Med Chem. 2010;18(17):6340-6350. https://doi.org/10.1016/j.bmc.2010.07.018.

30. Aioub AG, Dahora L, Gamble K, Finn MG. Selection of natural peptide ligands for copper-catalyzed azide-alkyne cycloaddition catalysis. Bioconjug Chem. 2017;28(6):1693-1701. https://doi.org/10.1021/acs.bioconjchem.7b00161.

31. Dondi R, Yaghini E, Tewari KM, Wang L, et al. Flexible synthesis of cationic peptide-porphyrin derivatives for light-triggered drug delivery and photodynamic therapy. Org Biomol Chem. 2016;14(48):11488-11501. https://doi.org/10.1039/C6OB02135B.

32. Renault K, et al. Covalent modification of biomolecules through maleimidebased labeling strategies. Bioconjug Chem. 2018;29(8):2497-2513. https://doi.org/10.1021/acs.bioconjchem.8b00252.

33. Ravi S, et al. Maleimide-thiol coupling of a bioactive peptide to an elastin-like protein polymer. Acta Biomater. 2012;8(2):627-635. https://doi.org/10.1016/j.actbio.2011.10.027.

34. Liu F, et al. Lipopolysaccharide neutralizing peptide-porphyrin conjugates for effective photoinactivation and intracellular imaging of Gram-negative bacteria strains. Bioconjug Chem. 2012;23(8):1639-1647. https://doi.org/10.1021/bc300203d.

35. Tam JP, Xu J, Eom KD. Methods and strategies of peptide ligation. Biopolymers. 2001;60(3):194-205. https://doi.org/10.1002/1097-0282(2001)60:3<194::AID-BIP10031>3.0.CO;2-8.

36. Egashira Y, Kono N, Tarutani N, Katagiri K, Hino S, Yamana K, Kawasaki R, Ikeda A. Formation of Poly-L-Lysine-Porphyrin Derivative Complex Exhibiting Diminished Dark Toxicity in Aqueous Solutions and High Photodynamic Activity. ChemBioChem. 2024;25(4):e202400926. https://doi.org/10.1002/cbic.202400926.

37. Chari RV, Miller ML, Widdison WC. Antibody-drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed. 2014;53(15):3796-3827. https://doi.org/10.1002/anie.201307628.

38. Mew D, et al. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol. 1983;130(3):14731477.

39. Hemming AW, Davis NL, Dubois B, Quenville NF, Finley RJ. Photodynamic therapy of squamous cell carcinoma: an evaluation of a new photosensitizing agent, benzoporphyrin derivative, and new photoimmunoconjugate. Surg Oncol. 1993;2:187-196.

40. Li C. Poly (L-glutamic acid)-anticancer drug conjugates. Adv Drug Deliv Rev. 2002;54(5):695-713. https://doi.org/10.1016/S0169-409X(02)00045-5.

41. Smith K, et al. Mono- and tri-cationic porphyrin-monoclonal antibody conjugates: photodynamic activity and mechanism of action. Immunology. 2011;132(2):256-265. https://doi.org/10.1111/j.1365-2567.2010.03359.x.

42. Pereira PMR, Korsak B, Sarmento B, Schneider RJ, Fernandes R, Tomé JPC. Antibodies armed with photosensitizers: from chemical synthesis to photobiological applications. Org Biomol Chem. 2015;13(3):2518-2529. https://doi.org/10.1039/C4OB02334J.

43. Pereira PMR, Carvalho JJ, Silva S, Cavaleiro JAS, Schneider RJ, Fernandes R, et al. Porphyrin conjugated with serum albumins and monoclonal antibodies boosts efficiency in targeted destruction of human bladder cancer cells. Org Biomol Chem. 2014;12(11):1804-1811. https://doi.org/10.1039/C3OB42082E.

44. Maruani A, Savoie H, Bryden F, Caddick S, Boyle R, Chudasama V. Site-selective multi-porphyrin attachment enables the formation of a next-generation antibodybased photodynamic therapeutic. Chem Commun. 2015;51(89):15304-15307. https://doi.org/10.1039/C5CC06985H.

45. Shinoda Y, et al. Novel photosensitizer β-mannose-conjugated chlorin e6 as a potent anticancer agent for human glioblastoma U251 cells. Pharmaceuticals. 2020;13(10):316. https://doi.org/10.3390/ph13100316.

46. Wu F, et al. Metalloporphyrin-indomethacin conjugates as new photosensitizers for photodynamic therapy. JBIC J Biol Inorg Chem. 2019;24:53-60. https://doi.org/10.1007/s00775-018-1626-9.


评论

供引用:


Shevchenko O.V., Shumatov V.B., Yang L. 光敏剂开发策略. 欧亚生命科学杂志. 2025;1(1):32-42. https://doi.org/10.47093/3033-5493.2025.1.1.32-42

For citation:


Shevchenko O.V., Shumatov V.B., Yang L. Strategies for the development of photosensitizers. The Eurasian Journal of Life Sciences. 2025;1(1):32-42. https://doi.org/10.47093/3033-5493.2025.1.1.32-42

浏览: 132


ISSN 3033-5493 (Print)
ISSN 3033-6031 (Online)